Skip to content

starter_semantic_action_primitives

WARNING! The StarterSemanticActionPrimitive is a work-in-progress and is only provided as an example. It currently only works with Fetch and Tiago with their JointControllers set to delta mode. See provided tiago_primitives.yaml config file for an example. See examples/action_primitives for runnable examples.

PlanningContext

Bases: object

A context manager that sets up a robot copy for collision checking in planning.

Source code in omnigibson/action_primitives/starter_semantic_action_primitives.py
class PlanningContext(object):
    """
    A context manager that sets up a robot copy for collision checking in planning.
    """

    def __init__(self, env, robot, robot_copy, robot_copy_type="original"):
        self.env = env
        self.robot = robot
        self.robot_copy = robot_copy
        self.robot_copy_type = robot_copy_type if robot_copy_type in robot_copy.prims.keys() else "original"
        self.disabled_collision_pairs_dict = {}

        # For now, the planning context only works with Fetch and Tiago
        assert isinstance(self.robot, (Fetch, Tiago)), "PlanningContext only works with Fetch and Tiago."

    def __enter__(self):
        self._assemble_robot_copy()
        self._construct_disabled_collision_pairs()
        return self

    def __exit__(self, *args):
        self._set_prim_pose(
            self.robot_copy.prims[self.robot_copy_type], self.robot_copy.reset_pose[self.robot_copy_type]
        )

    def _assemble_robot_copy(self):
        if m.TIAGO_TORSO_FIXED:
            fk_descriptor = "left_fixed"
        else:
            fk_descriptor = (
                "combined" if "combined" in self.robot.robot_arm_descriptor_yamls else self.robot.default_arm
            )
        self.fk_solver = FKSolver(
            robot_description_path=self.robot.robot_arm_descriptor_yamls[fk_descriptor],
            robot_urdf_path=self.robot.urdf_path,
        )

        # TODO: Remove the need for this after refactoring the FK / descriptors / etc.
        arm_links = self.robot.manipulation_link_names

        if m.TIAGO_TORSO_FIXED:
            assert self.arm == "left", "Fixed torso mode only supports left arm!"
            joint_control_idx = self.robot.arm_control_idx["left"]
            joint_pos = self.robot.get_joint_positions()[joint_control_idx]
        else:
            joint_combined_idx = th.cat([self.robot.trunk_control_idx, self.robot.arm_control_idx[fk_descriptor]])
            joint_pos = self.robot.get_joint_positions()[joint_combined_idx]
        link_poses = self.fk_solver.get_link_poses(joint_pos, arm_links)

        # Assemble robot meshes
        for link_name, meshes in self.robot_copy.meshes[self.robot_copy_type].items():
            for mesh_name, copy_mesh in meshes.items():
                # Skip grasping frame (this is necessary for Tiago, but should be cleaned up in the future)
                if "grasping_frame" in link_name:
                    continue
                # Set poses of meshes relative to the robot to construct the robot
                link_pose = (
                    link_poses[link_name]
                    if link_name in arm_links
                    else self.robot_copy.links_relative_poses[self.robot_copy_type][link_name]
                )
                mesh_copy_pose = T.pose_transform(
                    *link_pose, *self.robot_copy.relative_poses[self.robot_copy_type][link_name][mesh_name]
                )
                self._set_prim_pose(copy_mesh, mesh_copy_pose)

    def _set_prim_pose(self, prim, pose):
        translation = lazy.pxr.Gf.Vec3d(*pose[0].tolist())
        prim.GetAttribute("xformOp:translate").Set(translation)
        orientation = pose[1][[3, 0, 1, 2]]
        prim.GetAttribute("xformOp:orient").Set(lazy.pxr.Gf.Quatd(*orientation.tolist()))

    def _construct_disabled_collision_pairs(self):
        robot_meshes_copy = self.robot_copy.meshes[self.robot_copy_type]

        # Filter out collision pairs of meshes part of the same link
        for meshes in robot_meshes_copy.values():
            for mesh in meshes.values():
                self.disabled_collision_pairs_dict[mesh.GetPrimPath().pathString] = [
                    m.GetPrimPath().pathString for m in meshes.values()
                ]

        # Filter out all self-collisions
        if self.robot_copy_type == "simplified":
            all_meshes = [
                mesh.GetPrimPath().pathString
                for link in robot_meshes_copy.keys()
                for mesh in robot_meshes_copy[link].values()
            ]
            for link in robot_meshes_copy.keys():
                for mesh in robot_meshes_copy[link].values():
                    self.disabled_collision_pairs_dict[mesh.GetPrimPath().pathString] += all_meshes
        # Filter out collision pairs of meshes part of disabled collision pairs
        else:
            for pair in self.robot.disabled_collision_pairs:
                link_1 = pair[0]
                link_2 = pair[1]
                if link_1 in robot_meshes_copy.keys() and link_2 in robot_meshes_copy.keys():
                    for mesh in robot_meshes_copy[link_1].values():
                        self.disabled_collision_pairs_dict[mesh.GetPrimPath().pathString] += [
                            m.GetPrimPath().pathString for m in robot_meshes_copy[link_2].values()
                        ]

                    for mesh in robot_meshes_copy[link_2].values():
                        self.disabled_collision_pairs_dict[mesh.GetPrimPath().pathString] += [
                            m.GetPrimPath().pathString for m in robot_meshes_copy[link_1].values()
                        ]

        # Filter out colliders all robot copy meshes should ignore
        disabled_colliders = []

        # Disable original robot colliders so copy can't collide with it
        disabled_colliders += [link.prim_path for link in self.robot.links.values()]
        filter_categories = ["floors", "carpet"]
        for obj in self.env.scene.objects:
            if obj.category in filter_categories:
                disabled_colliders += [link.prim_path for link in obj.links.values()]

        # Disable object in hand
        obj_in_hand = self.robot._ag_obj_in_hand[self.robot.default_arm]
        if obj_in_hand is not None:
            disabled_colliders += [link.prim_path for link in obj_in_hand.links.values()]

        for colliders in self.disabled_collision_pairs_dict.values():
            colliders += disabled_colliders

RobotCopy

A data structure for storing information about a robot copy, used for collision checking in planning.

Source code in omnigibson/action_primitives/starter_semantic_action_primitives.py
class RobotCopy:
    """A data structure for storing information about a robot copy, used for collision checking in planning."""

    def __init__(self):
        self.prims = {}
        self.meshes = {}
        self.relative_poses = {}
        self.links_relative_poses = {}
        self.reset_pose = {
            "original": (th.tensor([0, 0, -5.0], dtype=th.float32), th.tensor([0, 0, 0, 1], dtype=th.float32)),
            "simplified": (th.tensor([5, 0, -5.0], dtype=th.float32), th.tensor([0, 0, 0, 1], dtype=th.float32)),
        }

StarterSemanticActionPrimitives

Bases: BaseActionPrimitiveSet

Source code in omnigibson/action_primitives/starter_semantic_action_primitives.py
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
class StarterSemanticActionPrimitives(BaseActionPrimitiveSet):
    def __init__(
        self,
        env,
        add_context=False,
        enable_head_tracking=True,
        always_track_eef=False,
        task_relevant_objects_only=False,
    ):
        """
        Initializes a StarterSemanticActionPrimitives generator.

        Args:
            env (Environment): The environment that the primitives will run on.
            add_context (bool): Whether to add text context to the return value. Defaults to False.
            enable_head_tracking (bool): Whether to enable head tracking. Defaults to True.
            always_track_eef (bool, optional): Whether to always track the end effector, as opposed
              to switching between target object and end effector based on context. Defaults to False.
            task_relevant_objects_only (bool): Whether to only consider objects relevant to the task
              when computing the action space. Defaults to False.
        """
        log.warning(
            "The StarterSemanticActionPrimitive is a work-in-progress and is only provided as an example. "
            "It currently only works with Fetch and Tiago with their JointControllers set to delta mode."
        )
        super().__init__(env)
        self.controller_functions = {
            StarterSemanticActionPrimitiveSet.GRASP: self._grasp,
            StarterSemanticActionPrimitiveSet.PLACE_ON_TOP: self._place_on_top,
            StarterSemanticActionPrimitiveSet.PLACE_INSIDE: self._place_inside,
            StarterSemanticActionPrimitiveSet.OPEN: self._open,
            StarterSemanticActionPrimitiveSet.CLOSE: self._close,
            StarterSemanticActionPrimitiveSet.NAVIGATE_TO: self._navigate_to_obj,
            StarterSemanticActionPrimitiveSet.RELEASE: self._execute_release,
            StarterSemanticActionPrimitiveSet.TOGGLE_ON: self._toggle_on,
            StarterSemanticActionPrimitiveSet.TOGGLE_OFF: self._toggle_off,
        }
        # Validate the robot
        if isinstance(self.robot, LocomotionRobot):
            assert isinstance(
                self.robot.controllers["base"], (JointController, DifferentialDriveController)
            ), "StarterSemanticActionPrimitives only works with a JointController or DifferentialDriveController at the robot base."
            if self._base_controller_is_joint:
                assert not self.robot.controllers[
                    "base"
                ].use_delta_commands, (
                    "StarterSemanticActionPrimitives only works with a base JointController with absolute mode."
                )

        self.robot_model = self.robot.model_name
        self.add_context = add_context

        self._task_relevant_objects_only = task_relevant_objects_only

        self._enable_head_tracking = enable_head_tracking
        self._always_track_eef = always_track_eef
        self._tracking_object = None

        # Store the current position of the arm as the arm target
        control_dict = self.robot.get_control_dict()
        self._arm_targets = {}
        if isinstance(self.robot, ManipulationRobot):
            for arm_name in self.robot.arm_names:
                eef = f"eef_{arm_name}"
                arm = f"arm_{arm_name}"
                arm_ctrl = self.robot.controllers[arm]
                if isinstance(arm_ctrl, InverseKinematicsController):
                    pos_relative = control_dict[f"{eef}_pos_relative"]
                    quat_relative = control_dict[f"{eef}_quat_relative"]
                    quat_relative_axis_angle = T.quat2axisangle(quat_relative)
                    self._arm_targets[arm] = (pos_relative, quat_relative_axis_angle)
                else:

                    arm_target = control_dict["joint_position"][arm_ctrl.dof_idx]
                    self._arm_targets[arm] = arm_target

        self.robot_copy = self._load_robot_copy()

    @property
    def arm(self):
        if not isinstance(self.robot, ManipulationRobot):
            raise ValueError("Cannot use arm for non-manipulation robot")
        return self.robot.default_arm

    @property
    def _base_controller_is_joint(self):
        return isinstance(self.robot.controllers["base"], JointController)

    def _postprocess_action(self, action):
        """Postprocesses action by applying head tracking and adding context if necessary."""
        if self._enable_head_tracking:
            action = self._overwrite_head_action(action)

        if not self.add_context:
            return action

        stack = inspect.stack()
        action_type = "manip:"
        context_function = stack[1].function

        for frame_info in stack[1:]:
            function_name = frame_info.function
            # TODO: Make this stop at apply_ref
            if function_name in ["_grasp", "_place_on_top", "_place_or_top", "_open_or_close"]:
                break
            if "nav" in function_name:
                action_type = "nav"

        context = action_type + context_function
        return action, context

    def _load_robot_copy(self):
        """Loads a copy of the robot that can be manipulated into arbitrary configurations for collision checking in planning."""
        robot_copy = RobotCopy()

        robots_to_copy = {"original": {"robot": self.robot, "copy_path": self.robot.prim_path + "_copy"}}

        for robot_type, rc in robots_to_copy.items():
            copy_robot = None
            copy_robot_meshes = {}
            copy_robot_meshes_relative_poses = {}
            copy_robot_links_relative_poses = {}

            # Create prim under which robot meshes are nested and set position
            lazy.omni.usd.commands.CreatePrimCommand("Xform", rc["copy_path"]).do()
            copy_robot = lazy.omni.isaac.core.utils.prims.get_prim_at_path(rc["copy_path"])
            reset_pose = robot_copy.reset_pose[robot_type]
            translation = lazy.pxr.Gf.Vec3d(*reset_pose[0].tolist())
            copy_robot.GetAttribute("xformOp:translate").Set(translation)
            orientation = reset_pose[1][[3, 0, 1, 2]]
            copy_robot.GetAttribute("xformOp:orient").Set(lazy.pxr.Gf.Quatd(*orientation.tolist()))

            robot_to_copy = None
            if robot_type == "simplified":
                robot_to_copy = rc["robot"]
                self.env.scene.add_object(robot_to_copy)
            else:
                robot_to_copy = rc["robot"]

            # Copy robot meshes
            for link in robot_to_copy.links.values():
                link_name = link.prim_path.split("/")[-1]
                for mesh_name, mesh in link.collision_meshes.items():
                    split_path = mesh.prim_path.split("/")
                    # Do not copy grasping frame (this is necessary for Tiago, but should be cleaned up in the future)
                    if "grasping_frame" in link_name:
                        continue

                    copy_mesh_path = rc["copy_path"] + "/" + link_name
                    copy_mesh_path += f"_{split_path[-1]}" if split_path[-1] != "collisions" else ""
                    lazy.omni.usd.commands.CopyPrimCommand(mesh.prim_path, path_to=copy_mesh_path).do()
                    copy_mesh = lazy.omni.isaac.core.utils.prims.get_prim_at_path(copy_mesh_path)
                    relative_pose = T.relative_pose_transform(
                        *mesh.get_position_orientation(), *link.get_position_orientation()
                    )
                    relative_pose = (relative_pose[0], th.tensor([0, 0, 0, 1]))
                    if link_name not in copy_robot_meshes.keys():
                        copy_robot_meshes[link_name] = {mesh_name: copy_mesh}
                        copy_robot_meshes_relative_poses[link_name] = {mesh_name: relative_pose}
                    else:
                        copy_robot_meshes[link_name][mesh_name] = copy_mesh
                        copy_robot_meshes_relative_poses[link_name][mesh_name] = relative_pose

                copy_robot_links_relative_poses[link_name] = T.relative_pose_transform(
                    *link.get_position_orientation(), *self.robot.get_position_orientation()
                )

            if robot_type == "simplified":
                self.env.scene.remove_object(robot_to_copy)

            robot_copy.prims[robot_type] = copy_robot
            robot_copy.meshes[robot_type] = copy_robot_meshes
            robot_copy.relative_poses[robot_type] = copy_robot_meshes_relative_poses
            robot_copy.links_relative_poses[robot_type] = copy_robot_links_relative_poses

        og.sim.step()
        return robot_copy

    def get_action_space(self):
        # TODO: Figure out how to implement what happens when the set of objects in scene changes.
        if self._task_relevant_objects_only:
            assert isinstance(
                self.env.task, BehaviorTask
            ), "Activity relevant objects can only be used for BEHAVIOR tasks"
            self.addressable_objects = sorted(set(self.env.task.object_scope.values()), key=lambda obj: obj.name)
        else:
            self.addressable_objects = sorted(set(self.env.scene.objects_by_name.values()), key=lambda obj: obj.name)

        # Filter out the robots.
        self.addressable_objects = [obj for obj in self.addressable_objects if not isinstance(obj, BaseRobot)]

        self.num_objects = len(self.addressable_objects)
        return gym.spaces.Tuple(
            [gym.spaces.Discrete(self.num_objects), gym.spaces.Discrete(len(StarterSemanticActionPrimitiveSet))]
        )

    def get_action_from_primitive_and_object(self, primitive: StarterSemanticActionPrimitiveSet, obj: BaseObject):
        assert obj in self.addressable_objects
        primitive_int = int(primitive)
        return primitive_int, self.addressable_objects.index(obj)

    def _get_obj_in_hand(self):
        """
        Get object in the robot's hand

        Returns:
            StatefulObject or None: Object if robot is holding something or None if it is not
        """
        obj_in_hand = self.robot._ag_obj_in_hand[self.arm]  # TODO(MP): Expose this interface.
        return obj_in_hand

    def apply(self, action):
        # Decompose the tuple
        action_idx, obj_idx = action

        # Find the target object.
        target_obj = self.addressable_objects[obj_idx]

        # Find the appropriate action generator.
        action = StarterSemanticActionPrimitiveSet(action_idx)
        return self.apply_ref(action, target_obj)

    def apply_ref(self, prim, *args, attempts=3):
        """
        Yields action for robot to execute the primitive with the given arguments.

        Args:
            prim (StarterSemanticActionPrimitiveSet): Primitive to execute
            args: Arguments for the primitive
            attempts (int): Number of attempts to make before raising an error

        Yields:
            th.tensor or None: Action array for one step for the robot to execute the primitve or None if primitive completed

        Raises:
            ActionPrimitiveError: If primitive fails to execute
        """
        assert attempts > 0, "Must make at least one attempt"
        ctrl = self.controller_functions[prim]

        errors = []
        for _ in range(attempts):
            # Attempt
            success = False
            try:
                yield from ctrl(*args)
                success = True
            except ActionPrimitiveError as e:
                errors.append(e)

            try:
                # If we're not holding anything, release the hand so it doesn't stick to anything else.
                if not self._get_obj_in_hand():
                    yield from self._execute_release()
            except ActionPrimitiveError:
                pass

            try:
                # Make sure we retract the arm after every step
                yield from self._reset_hand()
            except ActionPrimitiveError:
                pass

            try:
                # Settle before returning.
                yield from self._settle_robot()
            except ActionPrimitiveError:
                pass

            # Stop on success
            if success:
                return

        raise ActionPrimitiveErrorGroup(errors)

    def _open(self, obj):
        yield from self._open_or_close(obj, True)

    def _close(self, obj):
        yield from self._open_or_close(obj, False)

    def _open_or_close(self, obj, should_open):
        # Update the tracking to track the eef.
        self._tracking_object = self.robot

        if self._get_obj_in_hand():
            raise ActionPrimitiveError(
                ActionPrimitiveError.Reason.PRE_CONDITION_ERROR,
                "Cannot open or close an object while holding an object",
                {"object in hand": self._get_obj_in_hand().name},
            )

        # Open the hand first
        yield from self._execute_release()

        for _ in range(m.MAX_ATTEMPTS_FOR_OPEN_CLOSE):
            try:
                # TODO: This needs to be fixed. Many assumptions (None relevant joint, 3 waypoints, etc.)
                if should_open:
                    grasp_data = get_grasp_position_for_open(self.robot, obj, should_open, None)
                else:
                    grasp_data = get_grasp_position_for_open(self.robot, obj, should_open, None, num_waypoints=3)

                if grasp_data is None:
                    # We were trying to do something but didn't have the data.
                    raise ActionPrimitiveError(
                        ActionPrimitiveError.Reason.SAMPLING_ERROR,
                        "Could not sample grasp position for target object",
                        {"target object": obj.name},
                    )

                relevant_joint, grasp_pose, target_poses, object_direction, grasp_required, pos_change = grasp_data
                if abs(pos_change) < 0.1:
                    indented_print("Yaw change is small and done,", pos_change)
                    return

                # Prepare data for the approach later.
                approach_pos = grasp_pose[0] + object_direction * m.OPEN_GRASP_APPROACH_DISTANCE
                approach_pose = (approach_pos, grasp_pose[1])

                # If the grasp pose is too far, navigate
                yield from self._navigate_if_needed(obj, pose_on_obj=grasp_pose)

                yield from self._move_hand(grasp_pose, stop_if_stuck=True)

                # We can pre-grasp in sticky grasping mode only for opening
                if should_open:
                    yield from self._execute_grasp()

                # Since the grasp pose is slightly off the object, we want to move towards the object, around 5cm.
                # It's okay if we can't go all the way because we run into the object.
                yield from self._navigate_if_needed(obj, pose_on_obj=approach_pose)

                if should_open:
                    yield from self._move_hand_linearly_cartesian(
                        approach_pose, ignore_failure=False, stop_on_contact=True, stop_if_stuck=True
                    )
                else:
                    yield from self._move_hand_linearly_cartesian(
                        approach_pose, ignore_failure=False, stop_if_stuck=True
                    )

                # Step once to update
                empty_action = self._empty_action()
                yield self._postprocess_action(empty_action)

                for i, target_pose in enumerate(target_poses):
                    yield from self._move_hand_linearly_cartesian(target_pose, ignore_failure=False, stop_if_stuck=True)

                # Moving to target pose often fails. This might leave the robot's motors with torques that
                # try to get to a far-away position thus applying large torques, but unable to move due to
                # the sticky grasp joint. Thus if we release the joint, the robot might suddenly launch in an
                # arbitrary direction. To avoid this, we command the hand to apply torques with its current
                # position as its target. This prevents the hand from jerking into some other position when we do a release.
                yield from self._move_hand_linearly_cartesian(
                    self.robot.eef_links[self.arm].get_position_orientation(), ignore_failure=True, stop_if_stuck=True
                )

                if should_open:
                    yield from self._execute_release()
                    yield from self._move_base_backward()

            except ActionPrimitiveError as e:
                indented_print(e)
                if should_open:
                    yield from self._execute_release()
                    yield from self._move_base_backward()
                else:
                    yield from self._move_hand_backward()

        if obj.states[object_states.Open].get_value() != should_open:
            raise ActionPrimitiveError(
                ActionPrimitiveError.Reason.POST_CONDITION_ERROR,
                "Despite executing the planned trajectory, the object did not open or close as expected. Maybe try again",
                {"target object": obj.name, "is it currently open": obj.states[object_states.Open].get_value()},
            )

    # TODO: Figure out how to generalize out of this "backing out" behavior.
    def _move_base_backward(self, steps=5, speed=0.2):
        """
        Yields action for the robot to move base so the eef is in the target pose using the planner

        Args:
            steps (int): steps to move base
            speed (float): base speed

        Returns:
            th.tensor or None: Action array for one step for the robot to move base or None if its at the target pose
        """
        for _ in range(steps):
            action = self._empty_action()
            action[self.robot.controller_action_idx["gripper_{}".format(self.arm)]] = 1.0
            action[self.robot.base_control_idx[0]] = -speed
            yield self._postprocess_action(action)

    def _move_hand_backward(self, steps=5, speed=0.2):
        """
        Yields action for the robot to move its base backwards.

        Args:
            steps (int): steps to move eef
            speed (float): eef speed

        Returns:
            th.tensor or None: Action array for one step for the robot to move hand or None if its at the target pose
        """
        for _ in range(steps):
            action = self._empty_action()
            action[self.robot.controller_action_idx["gripper_{}".format(self.arm)]] = 1.0
            action[self.robot.controller_action_idx["arm_{}".format(self.arm)][0]] = -speed
            yield self._postprocess_action(action)

    def _move_hand_upward(self, steps=5, speed=0.1):
        """
        Yields action for the robot to move hand upward.

        Args:
            steps (int): steps to move eef
            speed (float): eef speed

        Returns:
            th.tensor or None: Action array for one step for the robot to move hand or None if its at the target pose
        """
        # TODO: Combine these movement functions.
        for _ in range(steps):
            action = self._empty_action()
            action[self.robot.controller_action_idx["gripper_{}".format(self.arm)]] = 1.0
            action[self.robot.controller_action_idx["arm_{}".format(self.arm)][2]] = speed
            yield self._postprocess_action(action)

    def _grasp(self, obj):
        """
        Yields action for the robot to navigate to object if needed, then to grasp it

        Args:
            StatefulObject: Object for robot to grasp

        Returns:
            th.tensor or None: Action array for one step for the robot to grasp or None if grasp completed
        """
        # Update the tracking to track the object.
        self._tracking_object = obj

        # Don't do anything if the object is already grasped.
        obj_in_hand = self._get_obj_in_hand()
        if obj_in_hand is not None:
            if obj_in_hand == obj:
                return
            else:
                raise ActionPrimitiveError(
                    ActionPrimitiveError.Reason.PRE_CONDITION_ERROR,
                    "Cannot grasp when your hand is already full",
                    {"target object": obj.name, "object currently in hand": obj_in_hand.name},
                )

        # Open the hand first
        indented_print("Opening hand before grasping")
        yield from self._execute_release()

        # Allow grasping from suboptimal extents if we've tried enough times.
        indented_print("Sampling grasp pose")
        grasp_poses = get_grasp_poses_for_object_sticky(obj)
        grasp_pose, object_direction = random.choice(grasp_poses)

        # Prepare data for the approach later.
        approach_pos = grasp_pose[0] + object_direction * m.GRASP_APPROACH_DISTANCE
        approach_pose = (approach_pos, grasp_pose[1])

        # If the grasp pose is too far, navigate.
        indented_print("Navigating to grasp pose if needed")
        yield from self._navigate_if_needed(obj, pose_on_obj=grasp_pose)

        indented_print("Moving hand to grasp pose")
        yield from self._move_hand(grasp_pose)

        # We can pre-grasp in sticky grasping mode.
        indented_print("Pregrasp squeeze")
        yield from self._execute_grasp()

        # Since the grasp pose is slightly off the object, we want to move towards the object, around 5cm.
        # It's okay if we can't go all the way because we run into the object.
        indented_print("Performing grasp approach")
        yield from self._move_hand_linearly_cartesian(approach_pose, stop_on_contact=True)

        # Step once to update
        empty_action = self._empty_action()
        yield self._postprocess_action(empty_action)

        indented_print("Checking grasp")
        if self._get_obj_in_hand() is None:
            raise ActionPrimitiveError(
                ActionPrimitiveError.Reason.POST_CONDITION_ERROR,
                "Grasp completed, but no object detected in hand after executing grasp",
                {"target object": obj.name},
            )

        indented_print("Moving hand back")
        yield from self._reset_hand()

        indented_print("Done with grasp")

        if self._get_obj_in_hand() != obj:
            raise ActionPrimitiveError(
                ActionPrimitiveError.Reason.POST_CONDITION_ERROR,
                "An unexpected object was detected in hand after executing grasp. Consider releasing it",
                {"expected object": obj.name, "actual object": self._get_obj_in_hand().name},
            )

    def _place_on_top(self, obj):
        """
        Yields action for the robot to navigate to the object if needed, then to place an object on it

        Args:
            obj (StatefulObject): Object for robot to place the object in its hand on

        Returns:
            th.tensor or None: Action array for one step for the robot to place or None if place completed
        """
        yield from self._place_with_predicate(obj, object_states.OnTop)

    def _place_inside(self, obj):
        """
        Yields action for the robot to navigate to the object if needed, then to place an object in it

        Args:
            obj (StatefulObject): Object for robot to place the object in its hand on

        Returns:
            th.tensor or None: Action array for one step for the robot to place or None if place completed
        """
        yield from self._place_with_predicate(obj, object_states.Inside)

    def _toggle_on(self, obj):
        yield from self._toggle(obj, True)

    def _toggle_off(self, obj):
        yield from self._toggle(obj, False)

    def _toggle(self, obj, value):
        if obj.states[object_states.ToggledOn].get_value() == value:
            return

        # Put the hand in the toggle marker.
        toggle_state = obj.states[object_states.ToggledOn]
        toggle_position = toggle_state.get_link_position()
        yield from self._navigate_if_needed(obj, toggle_position)

        # Just keep the current hand orientation.
        hand_orientation = self.robot.eef_links[self.arm].get_position_orientation()[1]
        desired_hand_pose = (toggle_position, hand_orientation)

        yield from self._move_hand(desired_hand_pose)

        if obj.states[object_states.ToggledOn].get_value() != value:
            raise ActionPrimitiveError(
                ActionPrimitiveError.Reason.POST_CONDITION_ERROR,
                "The object did not toggle as expected - maybe try again",
                {
                    "target object": obj.name,
                    "is it currently toggled on": obj.states[object_states.ToggledOn].get_value(),
                },
            )

    def _place_with_predicate(self, obj, predicate):
        """
        Yields action for the robot to navigate to the object if needed, then to place it

        Args:
            obj (StatefulObject): Object for robot to place the object in its hand on
            predicate (object_states.OnTop or object_states.Inside): Determines whether to place on top or inside

        Returns:
            th.tensor or None: Action array for one step for the robot to place or None if place completed
        """
        # Update the tracking to track the object.
        self._tracking_object = obj

        obj_in_hand = self._get_obj_in_hand()
        if obj_in_hand is None:
            raise ActionPrimitiveError(
                ActionPrimitiveError.Reason.PRE_CONDITION_ERROR,
                "You need to be grasping an object first to place it somewhere.",
            )

        # Sample location to place object
        obj_pose = self._sample_pose_with_object_and_predicate(predicate, obj_in_hand, obj)
        hand_pose = self._get_hand_pose_for_object_pose(obj_pose)

        yield from self._navigate_if_needed(obj, pose_on_obj=hand_pose)
        yield from self._move_hand(hand_pose)
        yield from self._execute_release()

        if self._get_obj_in_hand() is not None:
            raise ActionPrimitiveError(
                ActionPrimitiveError.Reason.EXECUTION_ERROR,
                "Could not release object - the object is still in your hand",
                {"object": self._get_obj_in_hand().name},
            )

        if not obj_in_hand.states[predicate].get_value(obj):
            raise ActionPrimitiveError(
                ActionPrimitiveError.Reason.EXECUTION_ERROR,
                "Failed to place object at the desired place (probably dropped). The object was still released, so you need to grasp it again to continue",
                {"dropped object": obj_in_hand.name, "target object": obj.name},
            )

        yield from self._move_hand_upward()

    def _convert_cartesian_to_joint_space(self, target_pose):
        """
        Gets joint positions for the arm so eef is at the target pose

        Args:
            target_pose (Iterable of array): Position and orientation arrays in an iterable for pose for the eef

        Returns:
            2-tuple
                - th.tensor or None: Joint positions to reach target pose or None if impossible to reach target pose
                - th.tensor: Indices for joints in the robot
        """
        relative_target_pose = self._get_pose_in_robot_frame(target_pose)
        joint_pos = self._ik_solver_cartesian_to_joint_space(relative_target_pose)
        if joint_pos is None:
            raise ActionPrimitiveError(
                ActionPrimitiveError.Reason.PLANNING_ERROR,
                "Could not find joint positions for target pose. You cannot reach it. Try again for a new pose",
            )
        return joint_pos

    def _target_in_reach_of_robot(self, target_pose):
        """
        Determines whether the eef for the robot can reach the target pose in the world frame

        Args:
            target_pose (Iterable of array): Position and orientation arrays in an iterable for the pose for the eef

        Returns:
            bool: Whether eef can reach the target pose
        """
        relative_target_pose = self._get_pose_in_robot_frame(target_pose)
        return self._target_in_reach_of_robot_relative(relative_target_pose)

    def _target_in_reach_of_robot_relative(self, relative_target_pose):
        """
        Determines whether eef for the robot can reach the target pose where the target pose is in the robot frame

        Args:
            target_pose (Iterable of array): Position and orientation arrays in an iterable for pose for the eef

        Returns:
            bool: Whether eef can the reach target pose
        """
        return self._ik_solver_cartesian_to_joint_space(relative_target_pose) is not None

    @property
    def _manipulation_control_idx(self):
        """The appropriate manipulation control idx for the current settings."""
        if isinstance(self.robot, Tiago):
            if m.TIAGO_TORSO_FIXED:
                assert self.arm == "left", "Fixed torso mode only supports left arm!"
                return self.robot.arm_control_idx["left"]
            else:
                return th.cat([self.robot.trunk_control_idx, self.robot.arm_control_idx[self.arm]])
        elif isinstance(self.robot, Fetch):
            return th.cat([self.robot.trunk_control_idx, self.robot.arm_control_idx[self.arm]])

        # Otherwise just return the default arm control idx
        return self.robot.arm_control_idx[self.arm]

    @property
    def _manipulation_descriptor_path(self):
        """The appropriate manipulation descriptor for the current settings."""
        if isinstance(self.robot, Tiago) and m.TIAGO_TORSO_FIXED:
            assert self.arm == "left", "Fixed torso mode only supports left arm!"
            return self.robot.robot_arm_descriptor_yamls["left_fixed"]

        # Otherwise just return the default arm control idx
        return self.robot.robot_arm_descriptor_yamls[self.arm]

    def _ik_solver_cartesian_to_joint_space(self, relative_target_pose):
        """
        Get joint positions for the arm so eef is at the target pose where the target pose is in the robot frame

        Args:
            relative_target_pose (Iterable of array): Position and orientation arrays in an iterable for pose in the robot frame

        Returns:
            2-tuple
                - th.tensor or None: Joint positions to reach target pose or None if impossible to reach the target pose
                - th.tensor: Indices for joints in the robot
        """
        ik_solver = IKSolver(
            robot_description_path=self._manipulation_descriptor_path,
            robot_urdf_path=self.robot.urdf_path,
            reset_joint_pos=self.robot.reset_joint_pos[self._manipulation_control_idx],
            eef_name=self.robot.eef_link_names[self.arm],
        )
        # Grab the joint positions in order to reach the desired pose target
        joint_pos = ik_solver.solve(
            target_pos=relative_target_pose[0],
            target_quat=relative_target_pose[1],
            max_iterations=100,
        )

        return joint_pos

    def _move_hand(self, target_pose, stop_if_stuck=False):
        """
        Yields action for the robot to move hand so the eef is in the target pose using the planner

        Args:
            target_pose (Iterable of array): Position and orientation arrays in an iterable for pose

        Returns:
            th.tensor or None: Action array for one step for the robot to move hand or None if its at the target pose
        """
        yield from self._settle_robot()
        controller_config = self.robot._controller_config["arm_" + self.arm]
        if controller_config["name"] == "InverseKinematicsController":
            target_pose_relative = self._get_pose_in_robot_frame(target_pose)
            yield from self._move_hand_ik(target_pose_relative, stop_if_stuck=stop_if_stuck)
        else:
            joint_pos = self._convert_cartesian_to_joint_space(target_pose)
            yield from self._move_hand_joint(joint_pos)

    def _move_hand_joint(self, joint_pos):
        """
        Yields action for the robot to move arm to reach the specified joint positions using the planner

        Args:
            joint_pos (th.tensor): Joint positions for the arm

        Returns:
            th.tensor or None: Action array for one step for the robot to move arm or None if its at the joint positions
        """
        with PlanningContext(self.env, self.robot, self.robot_copy, "original") as context:
            plan = plan_arm_motion(
                robot=self.robot,
                end_conf=joint_pos,
                context=context,
                torso_fixed=m.TIAGO_TORSO_FIXED,
            )

        # plan = self._add_linearly_interpolated_waypoints(plan, 0.1)
        if plan is None:
            raise ActionPrimitiveError(
                ActionPrimitiveError.Reason.PLANNING_ERROR,
                "There is no accessible path from where you are to the desired joint position. Try again",
            )

        # Follow the plan to navigate.
        indented_print(f"Plan has {len(plan)} steps")
        for i, joint_pos in enumerate(plan):
            indented_print(f"Executing arm movement plan step {i + 1}/{len(plan)}")
            yield from self._move_hand_direct_joint(joint_pos, ignore_failure=True)

    def _move_hand_ik(self, eef_pose, stop_if_stuck=False):
        """
        Yields action for the robot to move arm to reach the specified eef positions using the planner

        Args:
            eef_pose (th.tensor): End Effector pose for the arm

        Returns:
            th.tensor or None: Action array for one step for the robot to move arm or None if its at the joint positions
        """
        eef_pos = eef_pose[0]
        eef_ori = T.quat2axisangle(eef_pose[1])
        end_conf = th.cat((eef_pos, eef_ori))

        with PlanningContext(self.env, self.robot, self.robot_copy, "original") as context:
            plan = plan_arm_motion_ik(
                robot=self.robot,
                end_conf=end_conf,
                context=context,
                torso_fixed=m.TIAGO_TORSO_FIXED,
            )

        # plan = self._add_linearly_interpolated_waypoints(plan, 0.1)
        if plan is None:
            raise ActionPrimitiveError(
                ActionPrimitiveError.Reason.PLANNING_ERROR,
                "There is no accessible path from where you are to the desired joint position. Try again",
            )

        # Follow the plan to navigate.
        indented_print(f"Plan has {len(plan)} steps")
        for i, target_pose in enumerate(plan):
            target_pos = target_pose[:3]
            target_quat = T.axisangle2quat(target_pose[3:])
            indented_print(f"Executing grasp plan step {i + 1}/{len(plan)}")
            yield from self._move_hand_direct_ik(
                (target_pos, target_quat), ignore_failure=True, in_world_frame=False, stop_if_stuck=stop_if_stuck
            )

    def _add_linearly_interpolated_waypoints(self, plan, max_inter_dist):
        """
        Adds waypoints to the plan so the distance between values in the plan never exceeds the max_inter_dist.

        Args:
            plan (Array of arrays): Planned path
            max_inter_dist (float): Maximum distance between values in the plan

        Returns:
            Array of arrays: Planned path with additional waypoints
        """
        plan = th.tensor(plan)
        interpolated_plan = []
        for i in range(len(plan) - 1):
            max_diff = max(plan[i + 1] - plan[i])
            num_intervals = math.ceil(max_diff / max_inter_dist)
            interpolated_plan += th.linspace(plan[i], plan[i + 1], num_intervals, endpoint=False).tolist()
        interpolated_plan.append(plan[-1].tolist())
        return interpolated_plan

    def _move_hand_direct_joint(self, joint_pos, stop_on_contact=False, ignore_failure=False):
        """
        Yields action for the robot to move its arm to reach the specified joint positions by directly actuating with no planner

        Args:
            joint_pos (th.tensor): Array of joint positions for the arm
            stop_on_contact (boolean): Determines whether to stop move once an object is hit
            ignore_failure (boolean): Determines whether to throw error for not reaching final joint positions

        Returns:
            th.tensor or None: Action array for one step for the robot to move arm or None if its at the joint positions
        """

        # Store the previous eef pose for checking if we got stuck
        prev_eef_pos = th.zeros(3)

        # All we need to do here is save the target joint position so that empty action takes us towards it
        controller_name = f"arm_{self.arm}"
        self._arm_targets[controller_name] = joint_pos

        for i in range(m.MAX_STEPS_FOR_HAND_MOVE_JOINT):
            current_joint_pos = self.robot.get_joint_positions()[self._manipulation_control_idx]
            diff_joint_pos = joint_pos - current_joint_pos
            if th.max(th.abs(diff_joint_pos)).item() < m.JOINT_POS_DIFF_THRESHOLD:
                return
            if stop_on_contact and detect_robot_collision_in_sim(self.robot, ignore_obj_in_hand=False):
                return
            # check if the eef stayed in the same pose for sufficiently long
            if (
                og.sim.get_sim_step_dt() * i > m.TIME_BEFORE_JOINT_STUCK_CHECK
                and th.max(th.abs(self.robot.get_eef_position(self.arm) - prev_eef_pos)).item() < 0.0001
            ):
                # We're stuck!
                break

            # Since we set the new joint target as the arm_target, the empty action will take us towards it.
            action = self._empty_action()

            prev_eef_pos = self.robot.get_eef_position(self.arm)
            yield self._postprocess_action(action)

        if not ignore_failure:
            raise ActionPrimitiveError(
                ActionPrimitiveError.Reason.EXECUTION_ERROR,
                "Your hand was obstructed from moving to the desired joint position",
            )

    def _move_hand_direct_ik(
        self,
        target_pose,
        stop_on_contact=False,
        ignore_failure=False,
        pos_thresh=0.02,
        ori_thresh=0.4,
        in_world_frame=True,
        stop_if_stuck=False,
    ):
        """
        Moves the hand to a target pose using inverse kinematics.

        Args:
            target_pose (tuple): A tuple of two elements, representing the target pose of the hand as a position and a quaternion.
            stop_on_contact (bool, optional): Whether to stop the movement if the hand collides with an object. Defaults to False.
            ignore_failure (bool, optional): Whether to raise an exception if the movement fails. Defaults to False.
            pos_thresh (float, optional): The position threshold for considering the target pose reached. Defaults to 0.04.
            ori_thresh (float, optional): The orientation threshold for considering the target pose reached. Defaults to 0.4.
            in_world_frame (bool, optional): Whether the target pose is given in the world frame. Defaults to True.
            stop_if_stuck (bool, optional): Whether to stop the movement if the hand is stuck. Defaults to False.

        Yields:
            numpy.ndarray: The action to be executed by the robot controller.

        Raises:
            ActionPrimitiveError: If the movement fails and ignore_failure is False.
        """
        # make sure controller is InverseKinematicsController and in expected mode
        controller_config = self.robot._controller_config["arm_" + self.arm]
        assert (
            controller_config["name"] == "InverseKinematicsController"
        ), "Controller must be InverseKinematicsController"
        assert controller_config["mode"] == "pose_absolute_ori", "Controller must be in pose_absolute_ori mode"
        if in_world_frame:
            target_pose = self._get_pose_in_robot_frame(target_pose)
        target_pos = target_pose[0]
        target_orn = target_pose[1]
        target_orn_axisangle = T.quat2axisangle(target_pose[1])
        control_idx = self.robot.controller_action_idx["arm_" + self.arm]
        prev_pos = prev_orn = None

        # All we need to do here is save the target IK position so that empty action takes us towards it
        controller_name = f"arm_{self.arm}"
        self._arm_targets[controller_name] = (target_pos, target_orn_axisangle)

        for i in range(m.MAX_STEPS_FOR_HAND_MOVE_IK):
            current_pose = self._get_pose_in_robot_frame(
                (self.robot.get_eef_position(self.arm), self.robot.get_eef_orientation(self.arm))
            )
            current_pos = current_pose[0]
            current_orn = current_pose[1]

            delta_pos = target_pos - current_pos
            target_pos_diff = th.norm(delta_pos)
            target_orn_diff = T.get_orientation_diff_in_radian(current_orn, target_orn)
            reached_goal = target_pos_diff < pos_thresh and target_orn_diff < ori_thresh
            if reached_goal:
                return

            if stop_on_contact and detect_robot_collision_in_sim(self.robot, ignore_obj_in_hand=False):
                return

            # if i > 0 and stop_if_stuck and detect_robot_collision_in_sim(self.robot, ignore_obj_in_hand=False):
            if i > 0 and stop_if_stuck:
                pos_diff = th.norm(prev_pos - current_pos)
                orn_diff = T.get_orientation_diff_in_radian(current_orn, prev_orn)
                if pos_diff < 0.0003 and orn_diff < 0.01:
                    raise ActionPrimitiveError(ActionPrimitiveError.Reason.EXECUTION_ERROR, f"Hand is stuck")

            prev_pos = current_pos
            prev_orn = current_orn

            # Since we set the new IK target as the arm_target, the empty action will take us towards it.
            action = self._empty_action()
            yield self._postprocess_action(action)

        if not ignore_failure:
            raise ActionPrimitiveError(
                ActionPrimitiveError.Reason.EXECUTION_ERROR,
                "Your hand was obstructed from moving to the desired joint position",
            )

    def _move_hand_linearly_cartesian(
        self, target_pose, stop_on_contact=False, ignore_failure=False, stop_if_stuck=False
    ):
        """
        Yields action for the robot to move its arm to reach the specified target pose by moving the eef along a line in cartesian
        space from its current pose

        Args:
            target_pose (Iterable of array): Position and orientation arrays in an iterable for pose
            stop_on_contact (boolean): Determines whether to stop move once an object is hit
            ignore_failure (boolean): Determines whether to throw error for not reaching final joint positions

        Returns:
            th.tensor or None: Action array for one step for the robot to move arm or None if its at the target pose
        """
        # To make sure that this happens in a roughly linear fashion, we will divide the trajectory
        # into 1cm-long pieces
        start_pos, start_orn = self.robot.eef_links[self.arm].get_position_orientation()
        travel_distance = th.norm(target_pose[0] - start_pos)
        num_poses = int(
            th.max(th.tensor([2, int(travel_distance / m.MAX_CARTESIAN_HAND_STEP) + 1], dtype=th.float32)).item()
        )
        pos_waypoints = multi_dim_linspace(start_pos, target_pose[0], num_poses)

        # Also interpolate the rotations
        t_values = th.linspace(0, 1, num_poses)
        quat_waypoints = [T.quat_slerp(start_orn, target_pose[1], t) for t in t_values]

        controller_config = self.robot._controller_config["arm_" + self.arm]
        if controller_config["name"] == "InverseKinematicsController":
            waypoints = list(zip(pos_waypoints, quat_waypoints))

            for i, waypoint in enumerate(waypoints):
                if i < len(waypoints) - 1:
                    yield from self._move_hand_direct_ik(
                        waypoint,
                        stop_on_contact=stop_on_contact,
                        ignore_failure=ignore_failure,
                        stop_if_stuck=stop_if_stuck,
                    )
                else:
                    yield from self._move_hand_direct_ik(
                        waypoints[-1],
                        pos_thresh=0.01,
                        ori_thresh=0.1,
                        stop_on_contact=stop_on_contact,
                        ignore_failure=ignore_failure,
                        stop_if_stuck=stop_if_stuck,
                    )

                # Also decide if we can stop early.
                current_pos, current_orn = self.robot.eef_links[self.arm].get_position_orientation()
                pos_diff = th.norm(current_pos - target_pose[0])
                orn_diff = T.get_orientation_diff_in_radian(target_pose[1], current_orn).item()
                if pos_diff < m.HAND_DIST_THRESHOLD and orn_diff < th.deg2rad(th.tensor([0.1])).item():
                    return

                if stop_on_contact and detect_robot_collision_in_sim(self.robot, ignore_obj_in_hand=False):
                    return

            if not ignore_failure:
                raise ActionPrimitiveError(
                    ActionPrimitiveError.Reason.EXECUTION_ERROR,
                    "Your hand was obstructed from moving to the desired world position",
                )
        else:
            # Use joint positions
            joint_space_data = [
                self._convert_cartesian_to_joint_space(waypoint) for waypoint in zip(pos_waypoints, quat_waypoints)
            ]
            joints = list(self.robot.joints.values())

            for joint_pos in joint_space_data:
                # Check if the movement can be done roughly linearly.
                current_joint_positions = self.robot.get_joint_positions()[self._manipulation_control_idx]

                failed_joints = []
                for joint_idx, target_joint_pos, current_joint_pos in zip(
                    self._manipulation_control_idx, joint_pos, current_joint_positions
                ):
                    if th.abs(target_joint_pos - current_joint_pos) > m.MAX_ALLOWED_JOINT_ERROR_FOR_LINEAR_MOTION:
                        failed_joints.append(joints[joint_idx].joint_name)

                if failed_joints:
                    raise ActionPrimitiveError(
                        ActionPrimitiveError.Reason.EXECUTION_ERROR,
                        "You cannot reach the target position in a straight line - it requires rotating your arm which might cause collisions. You might need to get closer and retry",
                        {"failed joints": failed_joints},
                    )

                # Otherwise, move the joint
                yield from self._move_hand_direct_joint(
                    joint_pos, stop_on_contact=stop_on_contact, ignore_failure=ignore_failure
                )

                # Also decide if we can stop early.
                current_pos, current_orn = self.robot.eef_links[self.arm].get_position_orientation()
                pos_diff = th.norm(current_pos - target_pose[0])
                orn_diff = T.get_orientation_diff_in_radian(target_pose[1], current_orn)
                if pos_diff < 0.001 and orn_diff < th.deg2rad(th.tensor([0.1])).item():
                    return

                if stop_on_contact and detect_robot_collision_in_sim(self.robot, ignore_obj_in_hand=False):
                    return

            if not ignore_failure:
                raise ActionPrimitiveError(
                    ActionPrimitiveError.Reason.EXECUTION_ERROR,
                    "Your hand was obstructed from moving to the desired world position",
                )

    def _execute_grasp(self):
        """
        Yields action for the robot to grasp

        Returns:
            th.tensor or None: Action array for one step for the robot to grasp or None if its done grasping
        """
        for _ in range(m.MAX_STEPS_FOR_GRASP_OR_RELEASE):
            joint_position = self.robot.get_joint_positions()[self.robot.gripper_control_idx[self.arm]]
            joint_lower_limit = self.robot.joint_lower_limits[self.robot.gripper_control_idx[self.arm]]

            if th.allclose(joint_position, joint_lower_limit, atol=0.01):
                break

            action = self._empty_action()
            controller_name = "gripper_{}".format(self.arm)
            action[self.robot.controller_action_idx[controller_name]] = -1.0
            yield self._postprocess_action(action)

    def _execute_release(self):
        """
        Yields action for the robot to release its grasp

        Returns:
            th.tensor or None: Action array for one step for the robot to release or None if its done releasing
        """
        for _ in range(m.MAX_STEPS_FOR_GRASP_OR_RELEASE):
            joint_position = self.robot.get_joint_positions()[self.robot.gripper_control_idx[self.arm]]
            joint_upper_limit = self.robot.joint_upper_limits[self.robot.gripper_control_idx[self.arm]]

            if th.allclose(joint_position, joint_upper_limit, atol=0.01):
                break

            action = self._empty_action()
            controller_name = "gripper_{}".format(self.arm)
            action[self.robot.controller_action_idx[controller_name]] = 1.0
            yield self._postprocess_action(action)

        if self._get_obj_in_hand() is not None:
            raise ActionPrimitiveError(
                ActionPrimitiveError.Reason.EXECUTION_ERROR,
                "An object was still detected in your hand after executing release",
                {"object in hand": self._get_obj_in_hand().name},
            )

    def _overwrite_head_action(self, action):
        """
        Overwrites camera control actions to track an object of interest.
        If self._always_track_eef is true, always tracks the end effector of the robot.
        Otherwise, tracks the object of interest or the end effector as specified by the primitive.

        Args:
            action (array) : action array to overwrite
        """
        if self._always_track_eef:
            target_obj_pose = (self.robot.get_eef_position(self.arm), self.robot.get_eef_orientation(self.arm))
        else:
            if self._tracking_object is None:
                return action

            if self._tracking_object == self.robot:
                target_obj_pose = (self.robot.get_eef_position(self.arm), self.robot.get_eef_orientation(self.arm))
            else:
                target_obj_pose = self._tracking_object.get_position_orientation()

        assert self.robot_model == "Tiago", "Tracking object with camera is currently only supported for Tiago"

        head_q = self._get_head_goal_q(target_obj_pose)
        head_idx = self.robot.controller_action_idx["camera"]

        config = self.robot._controller_config["camera"]
        assert config["name"] == "JointController", "Camera controller must be JointController"
        assert config["motor_type"] == "position", "Camera controller must be in position control mode"
        use_delta = config["use_delta_commands"]

        if use_delta:
            cur_head_q = self.robot.get_joint_positions()[self.robot.camera_control_idx]
            head_action = head_q - cur_head_q
        else:
            head_action = head_q
        action[head_idx] = head_action
        return action

    def _get_head_goal_q(self, target_obj_pose):
        """
        Get goal joint positions for head to look at an object of interest,
        If the object cannot be seen, return the current head joint positions.
        """

        # get current head joint positions
        head1_joint = self.robot.joints["head_1_joint"]
        head2_joint = self.robot.joints["head_2_joint"]
        head1_joint_limits = [head1_joint.lower_limit, head1_joint.upper_limit]
        head2_joint_limits = [head2_joint.lower_limit, head2_joint.upper_limit]
        head1_joint_goal = head1_joint.get_state()[0][0]
        head2_joint_goal = head2_joint.get_state()[0][0]

        # grab robot and object poses
        robot_pose = self.robot.get_position_orientation()
        # obj_pose = obj.get_position_orientation()
        obj_in_base = T.relative_pose_transform(*target_obj_pose, *robot_pose)

        # compute angle between base and object in xy plane (parallel to floor)
        theta = th.arctan2(obj_in_base[0][1], obj_in_base[0][0])

        # if it is possible to get object in view, compute both head joint positions
        if head1_joint_limits[0] < theta < head1_joint_limits[1]:
            head1_joint_goal = theta

            # compute angle between base and object in xz plane (perpendicular to floor)
            head2_pose = self.robot.links["head_2_link"].get_position_orientation()
            head2_in_base = T.relative_pose_transform(*head2_pose, *robot_pose)

            phi = th.arctan2(obj_in_base[0][2] - head2_in_base[0][2], obj_in_base[0][0])
            if head2_joint_limits[0] < phi < head2_joint_limits[1]:
                head2_joint_goal = phi

        # if not possible to look at object, return current head joint positions
        else:
            default_head_pos = self._get_reset_joint_pos()[self.robot.controller_action_idx["camera"]]
            head1_joint_goal = default_head_pos[0]
            head2_joint_goal = default_head_pos[1]

        return [head1_joint_goal, head2_joint_goal]

    def _empty_action(self):
        """
        Generate a no-op action that will keep the robot still but aim to move the arms to the saved pose targets, if possible

        Returns:
            th.tensor or None: Action array for one step for the robot to do nothing
        """
        action = th.zeros(self.robot.action_dim)
        for name, controller in self.robot._controllers.items():
            # if desired arm targets are available, generate an action that moves the arms to the saved pose targets
            if name in self._arm_targets:
                if isinstance(controller, InverseKinematicsController):
                    arm = name.replace("arm_", "")
                    target_pos, target_orn_axisangle = self._arm_targets[name]
                    current_pos, current_orn = self._get_pose_in_robot_frame(
                        (self.robot.get_eef_position(arm), self.robot.get_eef_orientation(arm))
                    )
                    delta_pos = target_pos - current_pos
                    if controller.mode == "pose_delta_ori":
                        delta_orn = orientation_error(
                            T.quat2mat(T.axisangle2quat(target_orn_axisangle)), T.quat2mat(current_orn)
                        )
                        partial_action = th.cat((delta_pos, delta_orn))
                    elif controller.mode in "pose_absolute_ori":
                        partial_action = th.cat((delta_pos, target_orn_axisangle))
                    elif controller.mode == "absolute_pose":
                        partial_action = th.cat((target_pos, target_orn_axisangle))
                    else:
                        raise ValueError("Unexpected IK control mode")
                else:
                    target_joint_pos = self._arm_targets[name]
                    current_joint_pos = self.robot.get_joint_positions()[self._manipulation_control_idx]
                    if controller.use_delta_commands:
                        partial_action = target_joint_pos - current_joint_pos
                    else:
                        partial_action = target_joint_pos
            else:
                partial_action = controller.compute_no_op_action(self.robot.get_control_dict())
            action_idx = self.robot.controller_action_idx[name]
            action[action_idx] = partial_action
        return action

    def _reset_hand(self):
        """
        Yields action to move the hand to the position optimal for executing subsequent action primitives

        Returns:
            th.tensor or None: Action array for one step for the robot to reset its hand or None if it is done resetting
        """
        controller_config = self.robot._controller_config["arm_" + self.arm]
        if controller_config["name"] == "InverseKinematicsController":
            indented_print("Resetting hand")
            reset_eef_pose = self._get_reset_eef_pose()
            try:
                yield from self._move_hand_ik(reset_eef_pose)
            except ActionPrimitiveError:
                indented_print("Could not do a planned reset of the hand - probably obj_in_hand collides with body")
                yield from self._move_hand_direct_ik(reset_eef_pose, ignore_failure=True, in_world_frame=False)
        else:
            indented_print("Resetting hand")
            reset_pose = self._get_reset_joint_pos()[self._manipulation_control_idx]
            try:
                yield from self._move_hand_joint(reset_pose)
            except ActionPrimitiveError:
                indented_print("Could not do a planned reset of the hand - probably obj_in_hand collides with body")
                yield from self._move_hand_direct_joint(reset_pose, ignore_failure=True)

    def _get_reset_eef_pose(self):
        # TODO: Add support for Fetch
        if self.robot_model == "Tiago":
            return th.tensor([0.28493954, 0.37450749, 1.1512334]), th.tensor(
                [-0.21533823, 0.05361032, -0.08631776, 0.97123871]
            )
        elif self.robot_model == "Fetch":
            return th.tensor([0.48688125, -0.12507881, 0.97888719]), th.tensor(
                [0.61324748, 0.61305553, -0.35266518, 0.35173529]
            )
        else:
            raise ValueError(f"Unsupported robot model: {self.robot_model}")

    def _get_reset_joint_pos(self):
        reset_pose_fetch = th.tensor(
            [
                0.0,
                0.0,  # wheels
                0.0,  # trunk
                0.0,
                -1.0,
                0.0,  # head
                -1.0,
                1.53448,
                2.2,
                0.0,
                1.36904,
                1.90996,  # arm
                0.05,
                0.05,  # gripper
            ]
        )

        reset_pose_tiago = th.tensor(
            [
                -1.78029833e-04,
                3.20231302e-05,
                -1.85759447e-07,
                0.0,
                -0.2,
                0.0,
                0.1,
                -6.10000000e-01,
                -1.10000000e00,
                0.00000000e00,
                -1.10000000e00,
                1.47000000e00,
                0.00000000e00,
                8.70000000e-01,
                2.71000000e00,
                1.50000000e00,
                1.71000000e00,
                -1.50000000e00,
                -1.57000000e00,
                4.50000000e-01,
                1.39000000e00,
                0.00000000e00,
                0.00000000e00,
                4.50000000e-02,
                4.50000000e-02,
                4.50000000e-02,
                4.50000000e-02,
            ]
        )
        if self.robot_model == "Fetch":
            return reset_pose_fetch
        elif self.robot_model == "Tiago":
            return reset_pose_tiago
        else:
            raise ValueError(f"Unsupported robot model: {self.robot_model}")

    def _navigate_to_pose(self, pose_2d):
        """
        Yields the action to navigate robot to the specified 2d pose

        Args:
            pose_2d (Iterable): (x, y, yaw) 2d pose

        Returns:
            th.tensor or None: Action array for one step for the robot to navigate or None if it is done navigating
        """
        with PlanningContext(self.env, self.robot, self.robot_copy, "simplified") as context:
            plan = plan_base_motion(
                robot=self.robot,
                end_conf=pose_2d,
                context=context,
            )

        if plan is None:
            # TODO: Would be great to produce a more informative error.
            raise ActionPrimitiveError(
                ActionPrimitiveError.Reason.PLANNING_ERROR,
                "Could not make a navigation plan to get to the target position",
            )

        # Follow the plan to navigate.
        # self._draw_plan(plan)
        indented_print(f"Navigation plan has {len(plan)} steps")
        for i, pose_2d in enumerate(plan):
            indented_print(f"Executing navigation plan step {i + 1}/{len(plan)}")
            low_precision = True if i < len(plan) - 1 else False
            yield from self._navigate_to_pose_direct(pose_2d, low_precision=low_precision)

    def _draw_plan(self, plan):
        SEARCHED = []
        trav_map = self.env.scene._trav_map
        for q in plan:
            # The below code is useful for plotting the RRT tree.
            map_point = trav_map.world_to_map((q[0], q[1]))
            SEARCHED.append(th.flip(map_point, dims=tuple(range(map_point.dim()))))

            fig = plt.figure()
            plt.imshow(trav_map.floor_map[0])
            plt.scatter(*zip(*SEARCHED), 5)
            fig.canvas.draw()

            # Convert the canvas to image
            img = th.frombuffer(fig.canvas.tostring_rgb(), dtype=th.uint8)
            img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,))
            plt.close(fig)

            # Convert to BGR for cv2-based viewing.
            img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)

            cv2.imshow("SceneGraph", img)
            cv2.waitKey(1)

    def _navigate_if_needed(self, obj, pose_on_obj=None, **kwargs):
        """
        Yields action to navigate the robot to be in range of the object if it not in the range

        Args:
            obj (StatefulObject): Object for the robot to be in range of
            pose_on_obj (Iterable): (pos, quat) Pose

        Returns:
            th.tensor or None: Action array for one step for the robot to navigate or None if it is done navigating
        """
        if pose_on_obj is not None:
            if self._target_in_reach_of_robot(pose_on_obj):
                # No need to navigate.
                return
        elif self._target_in_reach_of_robot(obj.get_position_orientation()):
            return

        yield from self._navigate_to_obj(obj, pose_on_obj=pose_on_obj, **kwargs)

    def _navigate_to_obj(self, obj, pose_on_obj=None, **kwargs):
        """
        Yields action to navigate the robot to be in range of the pose

        Args:
            obj (StatefulObject): object to be in range of
            pose_on_obj (Iterable): (pos, quat) pose

        Returns:
            th.tensor or None: Action array for one step for the robot to navigate in range or None if it is done navigating
        """
        pose = self._sample_pose_near_object(obj, pose_on_obj=pose_on_obj, **kwargs)
        yield from self._navigate_to_pose(pose)

    def _navigate_to_pose_direct(self, pose_2d, low_precision=False):
        """
        Yields action to navigate the robot to the 2d pose without planning

        Args:
            pose_2d (Iterable): (x, y, yaw) 2d pose
            low_precision (bool): Determines whether to navigate to the pose within a large range (low precision) or small range (high precison)

        Returns:
            th.tensor or None: Action array for one step for the robot to navigate or None if it is done navigating
        """
        dist_threshold = m.LOW_PRECISION_DIST_THRESHOLD if low_precision else m.DEFAULT_DIST_THRESHOLD
        angle_threshold = m.LOW_PRECISION_ANGLE_THRESHOLD if low_precision else m.DEFAULT_ANGLE_THRESHOLD

        end_pose = self._get_robot_pose_from_2d_pose(pose_2d)
        body_target_pose = self._get_pose_in_robot_frame(end_pose)

        for _ in range(m.MAX_STEPS_FOR_WAYPOINT_NAVIGATION):
            if th.norm(body_target_pose[0][:2]) < dist_threshold:
                break

            diff_pos = end_pose[0] - self.robot.get_position_orientation()[0]
            intermediate_pose = (
                end_pose[0],
                T.euler2quat(th.tensor([0, 0, math.atan2(diff_pos[1], diff_pos[0])], dtype=th.float32)),
            )
            body_intermediate_pose = self._get_pose_in_robot_frame(intermediate_pose)
            diff_yaw = T.quat2euler(body_intermediate_pose[1])[2].item()
            if abs(diff_yaw) > m.DEFAULT_ANGLE_THRESHOLD:
                yield from self._rotate_in_place(intermediate_pose, angle_threshold=m.DEFAULT_ANGLE_THRESHOLD)
            else:
                action = self._empty_action()
                if self._base_controller_is_joint:
                    base_action_size = self.robot.controller_action_idx["base"].numel()
                    assert (
                        base_action_size == 3
                    ), "Currently, the action primitives only support [x, y, theta] joint controller"
                    direction_vec = (
                        body_target_pose[0][:2] / th.norm(body_target_pose[0][:2]) * m.KP_LIN_VEL[type(self.robot)]
                    )
                    base_action = th.tensor([direction_vec[0], direction_vec[1], 0.0], dtype=th.float32)
                    action[self.robot.controller_action_idx["base"]] = base_action
                else:
                    # Diff drive controller
                    base_action = th.tensor([m.KP_LIN_VEL[type(self.robot)], 0.0], dtype=th.float32)
                    action[self.robot.controller_action_idx["base"]] = base_action
                yield self._postprocess_action(action)

            body_target_pose = self._get_pose_in_robot_frame(end_pose)
        else:
            raise ActionPrimitiveError(
                ActionPrimitiveError.Reason.EXECUTION_ERROR,
                "Could not navigate to the target position",
                {"target pose": end_pose},
            )

        # Rotate in place to final orientation once at location
        yield from self._rotate_in_place(end_pose, angle_threshold=angle_threshold)

    def _rotate_in_place(self, end_pose, angle_threshold=m.DEFAULT_ANGLE_THRESHOLD):
        """
        Yields action to rotate the robot to the 2d end pose

        Args:
            end_pose (Iterable): (x, y, yaw) 2d pose
            angle_threshold (float): The angle difference between the robot's current and end pose that determines when the robot is done rotating

        Returns:
            th.tensor or None: Action array for one step for the robot to rotate or None if it is done rotating
        """
        body_target_pose = self._get_pose_in_robot_frame(end_pose)
        diff_yaw = T.quat2euler(body_target_pose[1])[2].item()

        for _ in range(m.MAX_STEPS_FOR_WAYPOINT_NAVIGATION):
            if abs(diff_yaw) < angle_threshold:
                break

            action = self._empty_action()

            direction = -1.0 if diff_yaw < 0.0 else 1.0
            ang_vel = m.KP_ANGLE_VEL[type(self.robot)] * direction

            if isinstance(self.robot, Locobot) or isinstance(self.robot, Freight):
                # Locobot and Freight wheel joints are reversed
                ang_vel = -ang_vel

            base_action = action[self.robot.controller_action_idx["base"]]

            if not self._base_controller_is_joint:
                base_action[0] = 0.0
                base_action[1] = ang_vel
            else:
                assert (
                    base_action.numel() == 3
                ), "Currently, the action primitives only support [x, y, theta] joint controller"
                base_action[0] = 0.0
                base_action[1] = 0.0
                base_action[2] = ang_vel

            action[self.robot.controller_action_idx["base"]] = base_action
            yield self._postprocess_action(action)

            body_target_pose = self._get_pose_in_robot_frame(end_pose)
            diff_yaw = T.quat2euler(body_target_pose[1])[2].item()
        else:
            raise ActionPrimitiveError(
                ActionPrimitiveError.Reason.EXECUTION_ERROR,
                "Could not rotate in place to the desired orientation",
                {"target pose": end_pose},
            )

        empty_action = self._empty_action()
        yield self._postprocess_action(empty_action)

    def _sample_pose_near_object(self, obj, pose_on_obj=None, **kwargs):
        """
        Returns a 2d pose for the robot within in the range of the object and where the robot is not in collision with anything

        Args:
            obj (StatefulObject): Object to sample a 2d pose near
            pose_on_obj (Iterable of arrays or None): The pose to sample near

        Returns:
            2-tuple:
                - 3-array: (x,y,z) Position in the world frame
                - 4-array: (x,y,z,w) Quaternion orientation in the world frame
        """
        with PlanningContext(self.env, self.robot, self.robot_copy, "simplified") as context:
            for _ in range(m.MAX_ATTEMPTS_FOR_SAMPLING_POSE_NEAR_OBJECT):
                if pose_on_obj is None:
                    pos_on_obj = self._sample_position_on_aabb_side(obj)
                    pose_on_obj = [pos_on_obj, th.tensor([0, 0, 0, 1])]

                distance_lo, distance_hi = 0.0, 5.0
                distance = (th.rand(1) * (distance_hi - distance_lo) + distance_lo).item()
                yaw_lo, yaw_hi = -math.pi, math.pi
                yaw = th.rand(1) * (yaw_hi - yaw_lo) + yaw_lo
                avg_arm_workspace_range = th.mean(self.robot.arm_workspace_range[self.arm])
                pose_2d = th.cat(
                    [
                        pose_on_obj[0][0] + distance * th.cos(yaw),
                        pose_on_obj[0][1] + distance * th.sin(yaw),
                        yaw + math.pi - avg_arm_workspace_range,
                    ]
                )
                # Check room
                obj_rooms = (
                    obj.in_rooms
                    if obj.in_rooms
                    else [self.env.scene._seg_map.get_room_instance_by_point(pose_on_obj[0][:2])]
                )
                if self.env.scene._seg_map.get_room_instance_by_point(pose_2d[:2]) not in obj_rooms:
                    indented_print("Candidate position is in the wrong room.")
                    continue

                if not self._test_pose(pose_2d, context, pose_on_obj=pose_on_obj, **kwargs):
                    continue

                indented_print("Found valid position near object.")
                return pose_2d

            raise ActionPrimitiveError(
                ActionPrimitiveError.Reason.SAMPLING_ERROR,
                "Could not find valid position near object.",
                {
                    "target object": obj.name,
                    "target pos": obj.get_position_orientation()[0],
                    "pose on target": pose_on_obj,
                },
            )

    @staticmethod
    def _sample_position_on_aabb_side(target_obj):
        """
        Returns a position on one of the axis-aligned bounding box (AABB) side faces of the target object.

        Args:
            target_obj (StatefulObject): Object to sample a position on

        Returns:
            3-array: (x,y,z) Position in the world frame
        """
        aabb_center, aabb_extent = target_obj.aabb_center, target_obj.aabb_extent
        # We want to sample only from the side-facing faces.
        face_normal_axis = random.choice([0, 1])
        face_normal_direction = random.choice([-1, 1])
        face_center = aabb_center + th.eye(3)[face_normal_axis] * aabb_extent * face_normal_direction
        face_lateral_axis = 0 if face_normal_axis == 1 else 1
        face_lateral_half_extent = th.eye(3)[face_lateral_axis] * aabb_extent / 2
        face_vertical_half_extent = th.eye(3)[2] * aabb_extent / 2
        face_min = face_center - face_vertical_half_extent - face_lateral_half_extent
        face_max = face_center + face_vertical_half_extent + face_lateral_half_extent
        return th.rand(face_min.size()) * (face_max - face_min) + face_min

    # def _sample_pose_in_room(self, room: str):
    #     """
    #     Returns a pose for the robot within in the room where the robot is not in collision with anything

    #     Args:
    #         room (str): Name of room

    #     Returns:
    #         2-tuple:
    #             - 3-array: (x,y,z) Position in the world frame
    #             - 4-array: (x,y,z,w) Quaternion orientation in the world frame
    #     """
    #     # TODO(MP): Bias the sampling near the agent.
    #     for _ in range(m.MAX_ATTEMPTS_FOR_SAMPLING_POSE_IN_ROOM):
    #         _, pos = self.env.scene.get_random_point_by_room_instance(room)
    #         yaw_lo, yaw_hi = -math.pi, math.pi
    #         yaw = (th.rand(1) * (yaw_hi - yaw_lo) + yaw_lo).item()
    #         pose = (pos[0], pos[1], yaw)
    #         if self._test_pose(pose):
    #             return pose

    #     raise ActionPrimitiveError(
    #         ActionPrimitiveError.Reason.SAMPLING_ERROR,
    #         "Could not find valid position in the given room to travel to",
    #         {"room": room}
    #     )

    def _sample_pose_with_object_and_predicate(
        self, predicate, held_obj, target_obj, near_poses=None, near_poses_threshold=None
    ):
        """
        Returns a pose for the held object relative to the target object that satisfies the predicate

        Args:
            predicate (object_states.OnTop or object_states.Inside): Relation between held object and the target object
            held_obj (StatefulObject): Object held by the robot
            target_obj (StatefulObject): Object to sample a pose relative to
            near_poses (Iterable of arrays): Poses in the world frame to sample near
            near_poses_threshold (float): The distance threshold to check if the sampled pose is near the poses in near_poses

        Returns:
            2-tuple:
                - 3-array: (x,y,z) Position in the world frame
                - 4-array: (x,y,z,w) Quaternion orientation in the world frame
        """
        pred_map = {object_states.OnTop: "onTop", object_states.Inside: "inside"}

        for _ in range(m.MAX_ATTEMPTS_FOR_SAMPLING_POSE_WITH_OBJECT_AND_PREDICATE):
            _, _, bb_extents, bb_center_in_base = held_obj.get_base_aligned_bbox()
            sampling_results = sample_cuboid_for_predicate(pred_map[predicate], target_obj, bb_extents)
            if sampling_results[0][0] is None:
                continue
            sampled_bb_center = sampling_results[0][0] + th.tensor([0, 0, m.PREDICATE_SAMPLING_Z_OFFSET])
            sampled_bb_orn = sampling_results[0][2]

            # Get the object pose by subtracting the offset
            sampled_obj_pose = T.pose2mat((sampled_bb_center, sampled_bb_orn)) @ T.pose_inv(
                T.pose2mat((bb_center_in_base, th.tensor([0, 0, 0, 1], dtype=th.float32)))
            )

            # Check that the pose is near one of the poses in the near_poses list if provided.
            if near_poses:
                sampled_pos = th.tensor([sampled_obj_pose[0]])
                if not th.any(th.norm(near_poses - sampled_pos, dim=1) < near_poses_threshold):
                    continue

            # Return the pose
            return T.mat2pose(sampled_obj_pose)

        # If we get here, sampling failed.
        raise ActionPrimitiveError(
            ActionPrimitiveError.Reason.SAMPLING_ERROR,
            "Could not find a position to put this object in the desired relation to the target object",
            {"target object": target_obj.name, "object in hand": held_obj.name, "relation": pred_map[predicate]},
        )

    # TODO: Why do we need to pass in the context here?
    def _test_pose(self, pose_2d, context, pose_on_obj=None):
        """
        Determines whether the robot can reach the pose on the object and is not in collision at the specified 2d pose

        Args:
            pose_2d (Iterable): (x, y, yaw) 2d pose
            context (Context): Planning context reference
            pose_on_obj (Iterable of arrays): Pose on the object in the world frame

        Returns:
            bool: True if the robot is in a valid pose, False otherwise
        """
        pose = self._get_robot_pose_from_2d_pose(pose_2d)
        if pose_on_obj is not None:
            relative_pose = T.relative_pose_transform(*pose_on_obj, *pose)
            if not self._target_in_reach_of_robot_relative(relative_pose):
                return False

        if set_base_and_detect_collision(context, pose):
            indented_print("Candidate position failed collision test.")
            return False
        return True

    @staticmethod
    def _get_robot_pose_from_2d_pose(pose_2d):
        """
        Gets 3d pose from 2d pose

        Args:
            pose_2d (Iterable): (x, y, yaw) 2d pose

        Returns:
            th.tensor: (x,y,z) Position in the world frame
            th.tensor: (x,y,z,w) Quaternion orientation in the world frame
        """
        pos = th.tensor([pose_2d[0], pose_2d[1], m.DEFAULT_BODY_OFFSET_FROM_FLOOR], dtype=th.float32)
        orn = T.euler2quat(th.tensor([0, 0, pose_2d[2]], dtype=th.float32))
        return pos, orn

    def _get_pose_in_robot_frame(self, pose):
        """
        Converts the pose in the world frame to the robot frame

        Args:
            pose_2d (Iterable): (x, y, yaw) 2d pose

        Returns:
            2-tuple:
                - 3-array: (x,y,z) Position in the world frame
                - 4-array: (x,y,z,w) Quaternion orientation in the world frame
        """
        body_pose = self.robot.get_position_orientation()
        return T.relative_pose_transform(*pose, *body_pose)

    def _get_hand_pose_for_object_pose(self, desired_pose):
        """
        Gets the pose of the hand for the desired object pose

        Args:
            desired_pose (Iterable of arrays): Pose of the object in the world frame

        Returns:
            2-tuple:
                - 3-array: (x,y,z) Position of the hand in the world frame
                - 4-array: (x,y,z,w) Quaternion orientation of the hand in the world frame
        """
        obj_in_hand = self._get_obj_in_hand()

        assert obj_in_hand is not None

        # Get the object pose & the robot hand pose
        obj_in_world = obj_in_hand.get_position_orientation()
        hand_in_world = self.robot.eef_links[self.arm].get_position_orientation()

        # Get the hand pose relative to the obj pose
        hand_in_obj = T.relative_pose_transform(*hand_in_world, *obj_in_world)

        # Now apply desired obj pose.
        desired_hand_pose = T.pose_transform(*desired_pose, *hand_in_obj)

        return desired_hand_pose

    # Function that is particularly useful for Fetch, where it gives time for the base of robot to settle due to its uneven base.
    def _settle_robot(self):
        """
        Yields a no op action for a few steps to allow the robot and physics to settle

        Returns:
            th.tensor or None: Action array for one step for the robot to do nothing
        """
        for _ in range(30):
            empty_action = self._empty_action()
            yield self._postprocess_action(empty_action)

        for _ in range(m.MAX_STEPS_FOR_SETTLING):
            if th.norm(self.robot.get_linear_velocity()) < 0.01:
                break
            empty_action = self._empty_action()
            yield self._postprocess_action(empty_action)

__init__(env, add_context=False, enable_head_tracking=True, always_track_eef=False, task_relevant_objects_only=False)

Initializes a StarterSemanticActionPrimitives generator.

Parameters:

Name Type Description Default
env Environment

The environment that the primitives will run on.

required
add_context bool

Whether to add text context to the return value. Defaults to False.

False
enable_head_tracking bool

Whether to enable head tracking. Defaults to True.

True
always_track_eef bool

Whether to always track the end effector, as opposed to switching between target object and end effector based on context. Defaults to False.

False
task_relevant_objects_only bool

Whether to only consider objects relevant to the task when computing the action space. Defaults to False.

False
Source code in omnigibson/action_primitives/starter_semantic_action_primitives.py
def __init__(
    self,
    env,
    add_context=False,
    enable_head_tracking=True,
    always_track_eef=False,
    task_relevant_objects_only=False,
):
    """
    Initializes a StarterSemanticActionPrimitives generator.

    Args:
        env (Environment): The environment that the primitives will run on.
        add_context (bool): Whether to add text context to the return value. Defaults to False.
        enable_head_tracking (bool): Whether to enable head tracking. Defaults to True.
        always_track_eef (bool, optional): Whether to always track the end effector, as opposed
          to switching between target object and end effector based on context. Defaults to False.
        task_relevant_objects_only (bool): Whether to only consider objects relevant to the task
          when computing the action space. Defaults to False.
    """
    log.warning(
        "The StarterSemanticActionPrimitive is a work-in-progress and is only provided as an example. "
        "It currently only works with Fetch and Tiago with their JointControllers set to delta mode."
    )
    super().__init__(env)
    self.controller_functions = {
        StarterSemanticActionPrimitiveSet.GRASP: self._grasp,
        StarterSemanticActionPrimitiveSet.PLACE_ON_TOP: self._place_on_top,
        StarterSemanticActionPrimitiveSet.PLACE_INSIDE: self._place_inside,
        StarterSemanticActionPrimitiveSet.OPEN: self._open,
        StarterSemanticActionPrimitiveSet.CLOSE: self._close,
        StarterSemanticActionPrimitiveSet.NAVIGATE_TO: self._navigate_to_obj,
        StarterSemanticActionPrimitiveSet.RELEASE: self._execute_release,
        StarterSemanticActionPrimitiveSet.TOGGLE_ON: self._toggle_on,
        StarterSemanticActionPrimitiveSet.TOGGLE_OFF: self._toggle_off,
    }
    # Validate the robot
    if isinstance(self.robot, LocomotionRobot):
        assert isinstance(
            self.robot.controllers["base"], (JointController, DifferentialDriveController)
        ), "StarterSemanticActionPrimitives only works with a JointController or DifferentialDriveController at the robot base."
        if self._base_controller_is_joint:
            assert not self.robot.controllers[
                "base"
            ].use_delta_commands, (
                "StarterSemanticActionPrimitives only works with a base JointController with absolute mode."
            )

    self.robot_model = self.robot.model_name
    self.add_context = add_context

    self._task_relevant_objects_only = task_relevant_objects_only

    self._enable_head_tracking = enable_head_tracking
    self._always_track_eef = always_track_eef
    self._tracking_object = None

    # Store the current position of the arm as the arm target
    control_dict = self.robot.get_control_dict()
    self._arm_targets = {}
    if isinstance(self.robot, ManipulationRobot):
        for arm_name in self.robot.arm_names:
            eef = f"eef_{arm_name}"
            arm = f"arm_{arm_name}"
            arm_ctrl = self.robot.controllers[arm]
            if isinstance(arm_ctrl, InverseKinematicsController):
                pos_relative = control_dict[f"{eef}_pos_relative"]
                quat_relative = control_dict[f"{eef}_quat_relative"]
                quat_relative_axis_angle = T.quat2axisangle(quat_relative)
                self._arm_targets[arm] = (pos_relative, quat_relative_axis_angle)
            else:

                arm_target = control_dict["joint_position"][arm_ctrl.dof_idx]
                self._arm_targets[arm] = arm_target

    self.robot_copy = self._load_robot_copy()

apply_ref(prim, *args, attempts=3)

Yields action for robot to execute the primitive with the given arguments.

Parameters:

Name Type Description Default
prim StarterSemanticActionPrimitiveSet

Primitive to execute

required
args

Arguments for the primitive

()
attempts int

Number of attempts to make before raising an error

3

Yields:

Type Description
tensor or None

Action array for one step for the robot to execute the primitve or None if primitive completed

Raises:

Type Description
ActionPrimitiveError

If primitive fails to execute

Source code in omnigibson/action_primitives/starter_semantic_action_primitives.py
def apply_ref(self, prim, *args, attempts=3):
    """
    Yields action for robot to execute the primitive with the given arguments.

    Args:
        prim (StarterSemanticActionPrimitiveSet): Primitive to execute
        args: Arguments for the primitive
        attempts (int): Number of attempts to make before raising an error

    Yields:
        th.tensor or None: Action array for one step for the robot to execute the primitve or None if primitive completed

    Raises:
        ActionPrimitiveError: If primitive fails to execute
    """
    assert attempts > 0, "Must make at least one attempt"
    ctrl = self.controller_functions[prim]

    errors = []
    for _ in range(attempts):
        # Attempt
        success = False
        try:
            yield from ctrl(*args)
            success = True
        except ActionPrimitiveError as e:
            errors.append(e)

        try:
            # If we're not holding anything, release the hand so it doesn't stick to anything else.
            if not self._get_obj_in_hand():
                yield from self._execute_release()
        except ActionPrimitiveError:
            pass

        try:
            # Make sure we retract the arm after every step
            yield from self._reset_hand()
        except ActionPrimitiveError:
            pass

        try:
            # Settle before returning.
            yield from self._settle_robot()
        except ActionPrimitiveError:
            pass

        # Stop on success
        if success:
            return

    raise ActionPrimitiveErrorGroup(errors)