Skip to content

robot_base

BaseRobot

Bases: USDObject, ControllableObject, GymObservable

Base class for USD-based robot agents.

This class handles object loading, and provides method interfaces that should be implemented by subclassed robots.

Source code in omnigibson/robots/robot_base.py
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
class BaseRobot(USDObject, ControllableObject, GymObservable):
    """
    Base class for USD-based robot agents.

    This class handles object loading, and provides method interfaces that should be
    implemented by subclassed robots.
    """

    def __init__(
        self,
        # Shared kwargs in hierarchy
        name,
        relative_prim_path=None,
        scale=None,
        visible=True,
        fixed_base=False,
        visual_only=False,
        self_collisions=False,
        load_config=None,
        # Unique to USDObject hierarchy
        abilities=None,
        # Unique to ControllableObject hierarchy
        control_freq=None,
        controller_config=None,
        action_type="continuous",
        action_normalize=True,
        reset_joint_pos=None,
        # Unique to BaseRobot
        obs_modalities=("rgb", "proprio"),
        proprio_obs="default",
        sensor_config=None,
        **kwargs,
    ):
        """
        Args:
            name (str): Name for the object. Names need to be unique per scene
            relative_prim_path (str): Scene-local prim path of the Prim to encapsulate or create.
            scale (None or float or 3-array): if specified, sets either the uniform (float) or x,y,z (3-array) scale
                for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a
                3-array specifies per-axis scaling.
            visible (bool): whether to render this object or not in the stage
            fixed_base (bool): whether to fix the base of this object or not
            visual_only (bool): Whether this object should be visual only (and not collide with any other objects)
            self_collisions (bool): Whether to enable self collisions for this object
            load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for
                loading this prim at runtime.
            abilities (None or dict): If specified, manually adds specific object states to this object. It should be
                a dict in the form of {ability: {param: value}} containing object abilities and parameters to pass to
                the object state instance constructor.
            control_freq (float): control frequency (in Hz) at which to control the object. If set to be None,
                we will automatically set the control frequency to be at the render frequency by default.
            controller_config (None or dict): nested dictionary mapping controller name(s) to specific controller
                configurations for this object. This will override any default values specified by this class.
            action_type (str): one of {discrete, continuous} - what type of action space to use
            action_normalize (bool): whether to normalize inputted actions. This will override any default values
                specified by this class.
            reset_joint_pos (None or n-array): if specified, should be the joint positions that the object should
                be set to during a reset. If None (default), self._default_joint_pos will be used instead.
                Note that _default_joint_pos are hardcoded & precomputed, and thus should not be modified by the user.
                Set this value instead if you want to initialize the robot with a different rese joint position.
            obs_modalities (str or list of str): Observation modalities to use for this robot. Default is ["rgb", "proprio"].
                Valid options are "all", or a list containing any subset of omnigibson.sensors.ALL_SENSOR_MODALITIES.
                Note: If @sensor_config explicitly specifies `modalities` for a given sensor class, it will
                    override any values specified from @obs_modalities!
            proprio_obs (str or list of str): proprioception observation key(s) to use for generating proprioceptive
                observations. If str, should be exactly "default" -- this results in the default proprioception
                observations being used, as defined by self.default_proprio_obs. See self._get_proprioception_dict
                for valid key choices
            sensor_config (None or dict): nested dictionary mapping sensor class name(s) to specific sensor
                configurations for this object. This will override any default values specified by this class.
            kwargs (dict): Additional keyword arguments that are used for other super() calls from subclasses, allowing
                for flexible compositions of various object subclasses (e.g.: Robot is USDObject + ControllableObject).
        """
        # Store inputs
        self._obs_modalities = (
            obs_modalities
            if obs_modalities == "all"
            else {obs_modalities} if isinstance(obs_modalities, str) else set(obs_modalities)
        )  # this will get updated later when we fill in our sensors
        self._proprio_obs = self.default_proprio_obs if proprio_obs == "default" else list(proprio_obs)
        self._sensor_config = sensor_config

        # Process abilities
        robot_abilities = {"robot": {}}
        abilities = robot_abilities if abilities is None else robot_abilities.update(abilities)

        # Initialize internal attributes that will be loaded later
        self._sensors = None  # e.g.: scan sensor, vision sensor

        # All BaseRobots should have xform properties pre-loaded
        load_config = {} if load_config is None else load_config
        load_config["xform_props_pre_loaded"] = True

        # Run super init
        super().__init__(
            relative_prim_path=relative_prim_path,
            usd_path=self.usd_path,
            name=name,
            category=m.ROBOT_CATEGORY,
            scale=scale,
            visible=visible,
            fixed_base=fixed_base,
            visual_only=visual_only,
            self_collisions=self_collisions,
            prim_type=PrimType.RIGID,
            include_default_states=True,
            load_config=load_config,
            abilities=abilities,
            control_freq=control_freq,
            controller_config=controller_config,
            action_type=action_type,
            action_normalize=action_normalize,
            reset_joint_pos=reset_joint_pos,
            **kwargs,
        )

        assert not isinstance(self._load_config["scale"], th.Tensor) or th.all(
            self._load_config["scale"] == self._load_config["scale"][0]
        ), f"Robot scale must be uniform! Got: {self._load_config['scale']}"

    def _post_load(self):
        # Run super post load first
        super()._post_load()

        # Load the sensors
        self._load_sensors()

    def _initialize(self):
        # Run super
        super()._initialize()

        # Initialize all sensors
        for sensor in self._sensors.values():
            sensor.initialize()

        # Load the observation space for this robot
        self.load_observation_space()

        # Validate this robot configuration
        self._validate_configuration()

        self._reset_joint_pos_aabb_extent = self.aabb_extent

    def _load_sensors(self):
        """
        Loads sensor(s) to retrieve observations from this object.
        Stores created sensors as dictionary mapping sensor names to specific sensor
        instances used by this object.
        """
        # Populate sensor config
        self._sensor_config = self._generate_sensor_config(custom_config=self._sensor_config)

        # Search for any sensors this robot might have attached to any of its links
        self._sensors = dict()
        obs_modalities = set()
        for link_name, link in self._links.items():
            # Search through all children prims and see if we find any sensor
            sensor_counts = {p: 0 for p in SENSOR_PRIMS_TO_SENSOR_CLS.keys()}
            for prim in link.prim.GetChildren():
                prim_type = prim.GetPrimTypeInfo().GetTypeName()
                if prim_type in SENSOR_PRIMS_TO_SENSOR_CLS:
                    # Infer what obs modalities to use for this sensor
                    sensor_cls = SENSOR_PRIMS_TO_SENSOR_CLS[prim_type]
                    sensor_kwargs = self._sensor_config[sensor_cls.__name__]
                    if "modalities" not in sensor_kwargs:
                        sensor_kwargs["modalities"] = (
                            sensor_cls.all_modalities
                            if self._obs_modalities == "all"
                            else sensor_cls.all_modalities.intersection(self._obs_modalities)
                        )
                    # If the modalities list is empty, don't import the sensor.
                    if not sensor_kwargs["modalities"]:
                        continue
                    obs_modalities = obs_modalities.union(sensor_kwargs["modalities"])
                    # Create the sensor and store it internally
                    sensor = create_sensor(
                        sensor_type=prim_type,
                        relative_prim_path=absolute_prim_path_to_scene_relative(self.scene, str(prim.GetPrimPath())),
                        name=f"{self.name}:{link_name}:{prim_type}:{sensor_counts[prim_type]}",
                        **sensor_kwargs,
                    )
                    sensor.load(self.scene)
                    self._sensors[sensor.name] = sensor
                    sensor_counts[prim_type] += 1

        # Since proprioception isn't an actual sensor, we need to possibly manually add it here as well
        if self._obs_modalities == "all" or "proprio" in self._obs_modalities:
            obs_modalities.add("proprio")

        # Update our overall obs modalities
        self._obs_modalities = obs_modalities

    def _generate_sensor_config(self, custom_config=None):
        """
        Generates a fully-populated sensor config, overriding any default values with the corresponding values
        specified in @custom_config

        Args:
            custom_config (None or Dict[str, ...]): nested dictionary mapping sensor class name(s) to specific custom
                sensor configurations for this object. This will override any default values specified by this class

        Returns:
            dict: Fully-populated nested dictionary mapping sensor class name(s) to specific sensor configurations
                for this object
        """
        sensor_config = {} if custom_config is None else deepcopy(custom_config)

        # Merge the sensor dictionaries
        sensor_config = merge_nested_dicts(
            base_dict=self._default_sensor_config,
            extra_dict=sensor_config,
        )

        return sensor_config

    def _validate_configuration(self):
        """
        Run any needed sanity checks to make sure this robot was created correctly.
        """
        pass

    def get_obs(self):
        """
        Grabs all observations from the robot. This is keyword-mapped based on each observation modality
            (e.g.: proprio, rgb, etc.)

        Returns:
            2-tuple:
                dict: Keyword-mapped dictionary mapping observation modality names to
                    observations (usually np arrays)
                dict: Keyword-mapped dictionary mapping observation modality names to
                    additional info
        """
        # Our sensors already know what observation modalities it has, so we simply iterate over all of them
        # and grab their observations, processing them into a flat dict
        obs_dict = dict()
        info_dict = dict()
        for sensor_name, sensor in self._sensors.items():
            obs_dict[sensor_name], info_dict[sensor_name] = sensor.get_obs()

        # Have to handle proprio separately since it's not an actual sensor
        if "proprio" in self._obs_modalities:
            obs_dict["proprio"], info_dict["proprio"] = self.get_proprioception()

        return obs_dict, info_dict

    def get_proprioception(self):
        """
        Returns:
            n-array: numpy array of all robot-specific proprioceptive observations.
            dict: empty dictionary, a placeholder for additional info
        """
        proprio_dict = self._get_proprioception_dict()
        return th.cat([proprio_dict[obs] for obs in self._proprio_obs]), {}

    def _get_proprioception_dict(self):
        """
        Returns:
            dict: keyword-mapped proprioception observations available for this robot.
                Can be extended by subclasses
        """
        joint_positions = ControllableObjectViewAPI.get_joint_positions(self.articulation_root_path)
        joint_velocities = ControllableObjectViewAPI.get_joint_velocities(self.articulation_root_path)
        joint_efforts = ControllableObjectViewAPI.get_joint_efforts(self.articulation_root_path)
        pos, quat = ControllableObjectViewAPI.get_position_orientation(self.articulation_root_path)
        ori = T.quat2euler(quat)

        ori_2d = T.z_angle_from_quat(quat)

        # Pack everything together
        return dict(
            joint_qpos=joint_positions,
            joint_qpos_sin=th.sin(joint_positions),
            joint_qpos_cos=th.cos(joint_positions),
            joint_qvel=joint_velocities,
            joint_qeffort=joint_efforts,
            robot_pos=pos,
            robot_ori_cos=th.cos(ori),
            robot_ori_sin=th.sin(ori),
            robot_2d_ori=ori_2d,
            robot_2d_ori_cos=th.cos(ori_2d),
            robot_2d_ori_sin=th.sin(ori_2d),
            robot_lin_vel=ControllableObjectViewAPI.get_linear_velocity(self.articulation_root_path),
            robot_ang_vel=ControllableObjectViewAPI.get_angular_velocity(self.articulation_root_path),
        )

    def _load_observation_space(self):
        # We compile observation spaces from our sensors
        obs_space = dict()

        for sensor_name, sensor in self._sensors.items():
            # Load the sensor observation space
            obs_space[sensor_name] = sensor.load_observation_space()

        # Have to handle proprio separately since it's not an actual sensor
        if "proprio" in self._obs_modalities:
            obs_space["proprio"] = self._build_obs_box_space(
                shape=(self.proprioception_dim,), low=-float("inf"), high=float("inf"), dtype=NumpyTypes.FLOAT32
            )

        return obs_space

    def add_obs_modality(self, modality):
        """
        Adds observation modality @modality to this robot. Note: Should be one of omnigibson.sensors.ALL_SENSOR_MODALITIES

        Args:
            modality (str): Observation modality to add to this robot
        """
        # Iterate over all sensors we own, and if the requested modality is a part of its possible valid modalities,
        # then we add it
        for sensor in self._sensors.values():
            if modality in sensor.all_modalities:
                sensor.add_modality(modality=modality)

    def remove_obs_modality(self, modality):
        """
        Remove observation modality @modality from this robot. Note: Should be one of
        omnigibson.sensors.ALL_SENSOR_MODALITIES

        Args:
            modality (str): Observation modality to remove from this robot
        """
        # Iterate over all sensors we own, and if the requested modality is a part of its possible valid modalities,
        # then we remove it
        for sensor in self._sensors.values():
            if modality in sensor.all_modalities:
                sensor.remove_modality(modality=modality)

    def visualize_sensors(self):
        """
        Renders this robot's key sensors, visualizing them via matplotlib plots
        """
        frames = dict()
        remaining_obs_modalities = deepcopy(self.obs_modalities)
        for sensor in self.sensors.values():
            obs, _ = sensor.get_obs()
            sensor_frames = []
            if isinstance(sensor, VisionSensor):
                # We check for rgb, depth, normal, seg_instance
                for modality in ["rgb", "depth", "normal", "seg_instance"]:
                    if modality in sensor.modalities:
                        ob = obs[modality]
                        if modality == "rgb":
                            # Ignore alpha channel, map to floats
                            ob = ob[:, :, :3] / 255.0
                        elif modality == "seg_instance":
                            # Map IDs to rgb
                            ob = segmentation_to_rgb(ob, N=256) / 255.0
                        elif modality == "normal":
                            # Re-map to 0 - 1 range
                            ob = (ob + 1.0) / 2.0
                        else:
                            # Depth, nothing to do here
                            pass
                        # Add this observation to our frames and remove the modality
                        sensor_frames.append((modality, ob))
                        remaining_obs_modalities -= {modality}
                    else:
                        # Warn user that we didn't find this modality
                        print(f"Modality {modality} is not active in sensor {sensor.name}, skipping...")
            elif isinstance(sensor, ScanSensor):
                # We check for occupancy_grid
                occupancy_grid = obs.get("occupancy_grid", None)
                if occupancy_grid is not None:
                    sensor_frames.append(("occupancy_grid", occupancy_grid))
                    remaining_obs_modalities -= {"occupancy_grid"}

            # Map the sensor name to the frames for that sensor
            frames[sensor.name] = sensor_frames

        # Warn user that any remaining modalities are not able to be visualized
        if len(remaining_obs_modalities) > 0:
            print(f"Modalities: {remaining_obs_modalities} cannot be visualized, skipping...")

        # Write all the frames to a plot
        import matplotlib.pyplot as plt

        for sensor_name, sensor_frames in frames.items():
            n_sensor_frames = len(sensor_frames)
            if n_sensor_frames > 0:
                fig, axes = plt.subplots(nrows=1, ncols=n_sensor_frames)
                if n_sensor_frames == 1:
                    axes = [axes]
                # Dump frames and set each subtitle
                for i, (modality, frame) in enumerate(sensor_frames):
                    axes[i].imshow(frame)
                    axes[i].set_title(modality)
                    axes[i].set_axis_off()
                # Set title
                fig.suptitle(sensor_name)
                plt.show(block=False)

        # One final plot show so all the figures get rendered
        plt.show()

    def update_handles(self):
        # Call super first
        super().update_handles()

    def remove(self):
        """
        Do NOT call this function directly to remove a prim - call og.sim.remove_prim(prim) for proper cleanup
        """
        # Remove all sensors
        for sensor in self._sensors.values():
            sensor.remove()

        # Run super
        super().remove()

    @property
    def reset_joint_pos_aabb_extent(self):
        """
        This is the aabb extent of the robot in the robot frame after resetting the joints.
        Returns:
            3-array: Axis-aligned bounding box extent of the robot base
        """
        return self._reset_joint_pos_aabb_extent

    def teleop_data_to_action(self, teleop_action) -> th.Tensor:
        """
        Generate action data from teleoperation action data
        Args:
            teleop_action (TeleopAction): teleoperation action data
        Returns:
            th.tensor: array of action data filled with update value
        """
        return th.zeros(self.action_dim)

    @property
    def sensors(self):
        """
        Returns:
            dict: Keyword-mapped dictionary mapping sensor names to BaseSensor instances owned by this robot
        """
        return self._sensors

    @property
    def obs_modalities(self):
        """
        Returns:
            set of str: Observation modalities used for this robot (e.g.: proprio, rgb, etc.)
        """
        assert self._loaded, "Cannot check observation modalities until we load this robot!"
        return self._obs_modalities

    @property
    def proprioception_dim(self):
        """
        Returns:
            int: Size of self.get_proprioception() vector
        """
        return len(self.get_proprioception()[0])

    @property
    def _default_sensor_config(self):
        """
        Returns:
            dict: default nested dictionary mapping sensor class name(s) to specific sensor
                configurations for this object. See kwargs from omnigibson/sensors/__init__/create_sensor for more
                details

                Expected structure is as follows:
                    SensorClassName1:
                        modalities: ...
                        enabled: ...
                        noise_type: ...
                        noise_kwargs:
                            ...
                        sensor_kwargs:
                            ...
                    SensorClassName2:
                        modalities: ...
                        enabled: ...
                        noise_type: ...
                        noise_kwargs:
                            ...
                        sensor_kwargs:
                            ...
                    ...
        """
        return {
            "VisionSensor": {
                "enabled": True,
                "noise_type": None,
                "noise_kwargs": None,
                "sensor_kwargs": {
                    "image_height": 128,
                    "image_width": 128,
                },
            },
            "ScanSensor": {
                "enabled": True,
                "noise_type": None,
                "noise_kwargs": None,
                "sensor_kwargs": {
                    # Basic LIDAR kwargs
                    "min_range": 0.05,
                    "max_range": 10.0,
                    "horizontal_fov": 360.0,
                    "vertical_fov": 1.0,
                    "yaw_offset": 0.0,
                    "horizontal_resolution": 1.0,
                    "vertical_resolution": 1.0,
                    "rotation_rate": 0.0,
                    "draw_points": False,
                    "draw_lines": False,
                    # Occupancy Grid kwargs
                    "occupancy_grid_resolution": 128,
                    "occupancy_grid_range": 5.0,
                    "occupancy_grid_inner_radius": 0.5,
                    "occupancy_grid_local_link": None,
                },
            },
        }

    @property
    def default_proprio_obs(self):
        """
        Returns:
            list of str: Default proprioception observations to use
        """
        return []

    @property
    def model_name(self):
        """
        Returns:
            str: name of this robot model. usually corresponds to the class name of a given robot model
        """
        return self.__class__.__name__

    @property
    @abstractmethod
    def usd_path(self):
        # For all robots, this must be specified a priori, before we actually initialize the USDObject constructor!
        # So we override the parent implementation, and make this an abstract method
        raise NotImplementedError

    @property
    def urdf_path(self):
        """
        Returns:
            str: file path to the robot urdf file.
        """
        raise NotImplementedError

    @property
    def curobo_path(self):
        """
        Returns:
            str: file path to the robot curobo configuration yaml file.
        """
        raise NotImplementedError

    @classproperty
    def _do_not_register_classes(cls):
        # Don't register this class since it's an abstract template
        classes = super()._do_not_register_classes
        classes.add("BaseRobot")
        return classes

    @classproperty
    def _cls_registry(cls):
        # Global robot registry -- override super registry
        global REGISTERED_ROBOTS
        return REGISTERED_ROBOTS

curobo_path property

Returns:

Type Description
str

file path to the robot curobo configuration yaml file.

default_proprio_obs property

Returns:

Type Description
list of str

Default proprioception observations to use

model_name property

Returns:

Type Description
str

name of this robot model. usually corresponds to the class name of a given robot model

obs_modalities property

Returns:

Type Description
set of str

Observation modalities used for this robot (e.g.: proprio, rgb, etc.)

proprioception_dim property

Returns:

Type Description
int

Size of self.get_proprioception() vector

reset_joint_pos_aabb_extent property

This is the aabb extent of the robot in the robot frame after resetting the joints. Returns: 3-array: Axis-aligned bounding box extent of the robot base

sensors property

Returns:

Type Description
dict

Keyword-mapped dictionary mapping sensor names to BaseSensor instances owned by this robot

urdf_path property

Returns:

Type Description
str

file path to the robot urdf file.

__init__(name, relative_prim_path=None, scale=None, visible=True, fixed_base=False, visual_only=False, self_collisions=False, load_config=None, abilities=None, control_freq=None, controller_config=None, action_type='continuous', action_normalize=True, reset_joint_pos=None, obs_modalities=('rgb', 'proprio'), proprio_obs='default', sensor_config=None, **kwargs)

Parameters:

Name Type Description Default
name str

Name for the object. Names need to be unique per scene

required
relative_prim_path str

Scene-local prim path of the Prim to encapsulate or create.

None
scale None or float or 3 - array

if specified, sets either the uniform (float) or x,y,z (3-array) scale for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a 3-array specifies per-axis scaling.

None
visible bool

whether to render this object or not in the stage

True
fixed_base bool

whether to fix the base of this object or not

False
visual_only bool

Whether this object should be visual only (and not collide with any other objects)

False
self_collisions bool

Whether to enable self collisions for this object

False
load_config None or dict

If specified, should contain keyword-mapped values that are relevant for loading this prim at runtime.

None
abilities None or dict

If specified, manually adds specific object states to this object. It should be a dict in the form of {ability: {param: value}} containing object abilities and parameters to pass to the object state instance constructor.

None
control_freq float

control frequency (in Hz) at which to control the object. If set to be None, we will automatically set the control frequency to be at the render frequency by default.

None
controller_config None or dict

nested dictionary mapping controller name(s) to specific controller configurations for this object. This will override any default values specified by this class.

None
action_type str

one of {discrete, continuous} - what type of action space to use

'continuous'
action_normalize bool

whether to normalize inputted actions. This will override any default values specified by this class.

True
reset_joint_pos None or n - array

if specified, should be the joint positions that the object should be set to during a reset. If None (default), self._default_joint_pos will be used instead. Note that _default_joint_pos are hardcoded & precomputed, and thus should not be modified by the user. Set this value instead if you want to initialize the robot with a different rese joint position.

None
obs_modalities str or list of str

Observation modalities to use for this robot. Default is ["rgb", "proprio"]. Valid options are "all", or a list containing any subset of omnigibson.sensors.ALL_SENSOR_MODALITIES. Note: If @sensor_config explicitly specifies modalities for a given sensor class, it will override any values specified from @obs_modalities!

('rgb', 'proprio')
proprio_obs str or list of str

proprioception observation key(s) to use for generating proprioceptive observations. If str, should be exactly "default" -- this results in the default proprioception observations being used, as defined by self.default_proprio_obs. See self._get_proprioception_dict for valid key choices

'default'
sensor_config None or dict

nested dictionary mapping sensor class name(s) to specific sensor configurations for this object. This will override any default values specified by this class.

None
kwargs dict

Additional keyword arguments that are used for other super() calls from subclasses, allowing for flexible compositions of various object subclasses (e.g.: Robot is USDObject + ControllableObject).

{}
Source code in omnigibson/robots/robot_base.py
def __init__(
    self,
    # Shared kwargs in hierarchy
    name,
    relative_prim_path=None,
    scale=None,
    visible=True,
    fixed_base=False,
    visual_only=False,
    self_collisions=False,
    load_config=None,
    # Unique to USDObject hierarchy
    abilities=None,
    # Unique to ControllableObject hierarchy
    control_freq=None,
    controller_config=None,
    action_type="continuous",
    action_normalize=True,
    reset_joint_pos=None,
    # Unique to BaseRobot
    obs_modalities=("rgb", "proprio"),
    proprio_obs="default",
    sensor_config=None,
    **kwargs,
):
    """
    Args:
        name (str): Name for the object. Names need to be unique per scene
        relative_prim_path (str): Scene-local prim path of the Prim to encapsulate or create.
        scale (None or float or 3-array): if specified, sets either the uniform (float) or x,y,z (3-array) scale
            for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a
            3-array specifies per-axis scaling.
        visible (bool): whether to render this object or not in the stage
        fixed_base (bool): whether to fix the base of this object or not
        visual_only (bool): Whether this object should be visual only (and not collide with any other objects)
        self_collisions (bool): Whether to enable self collisions for this object
        load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for
            loading this prim at runtime.
        abilities (None or dict): If specified, manually adds specific object states to this object. It should be
            a dict in the form of {ability: {param: value}} containing object abilities and parameters to pass to
            the object state instance constructor.
        control_freq (float): control frequency (in Hz) at which to control the object. If set to be None,
            we will automatically set the control frequency to be at the render frequency by default.
        controller_config (None or dict): nested dictionary mapping controller name(s) to specific controller
            configurations for this object. This will override any default values specified by this class.
        action_type (str): one of {discrete, continuous} - what type of action space to use
        action_normalize (bool): whether to normalize inputted actions. This will override any default values
            specified by this class.
        reset_joint_pos (None or n-array): if specified, should be the joint positions that the object should
            be set to during a reset. If None (default), self._default_joint_pos will be used instead.
            Note that _default_joint_pos are hardcoded & precomputed, and thus should not be modified by the user.
            Set this value instead if you want to initialize the robot with a different rese joint position.
        obs_modalities (str or list of str): Observation modalities to use for this robot. Default is ["rgb", "proprio"].
            Valid options are "all", or a list containing any subset of omnigibson.sensors.ALL_SENSOR_MODALITIES.
            Note: If @sensor_config explicitly specifies `modalities` for a given sensor class, it will
                override any values specified from @obs_modalities!
        proprio_obs (str or list of str): proprioception observation key(s) to use for generating proprioceptive
            observations. If str, should be exactly "default" -- this results in the default proprioception
            observations being used, as defined by self.default_proprio_obs. See self._get_proprioception_dict
            for valid key choices
        sensor_config (None or dict): nested dictionary mapping sensor class name(s) to specific sensor
            configurations for this object. This will override any default values specified by this class.
        kwargs (dict): Additional keyword arguments that are used for other super() calls from subclasses, allowing
            for flexible compositions of various object subclasses (e.g.: Robot is USDObject + ControllableObject).
    """
    # Store inputs
    self._obs_modalities = (
        obs_modalities
        if obs_modalities == "all"
        else {obs_modalities} if isinstance(obs_modalities, str) else set(obs_modalities)
    )  # this will get updated later when we fill in our sensors
    self._proprio_obs = self.default_proprio_obs if proprio_obs == "default" else list(proprio_obs)
    self._sensor_config = sensor_config

    # Process abilities
    robot_abilities = {"robot": {}}
    abilities = robot_abilities if abilities is None else robot_abilities.update(abilities)

    # Initialize internal attributes that will be loaded later
    self._sensors = None  # e.g.: scan sensor, vision sensor

    # All BaseRobots should have xform properties pre-loaded
    load_config = {} if load_config is None else load_config
    load_config["xform_props_pre_loaded"] = True

    # Run super init
    super().__init__(
        relative_prim_path=relative_prim_path,
        usd_path=self.usd_path,
        name=name,
        category=m.ROBOT_CATEGORY,
        scale=scale,
        visible=visible,
        fixed_base=fixed_base,
        visual_only=visual_only,
        self_collisions=self_collisions,
        prim_type=PrimType.RIGID,
        include_default_states=True,
        load_config=load_config,
        abilities=abilities,
        control_freq=control_freq,
        controller_config=controller_config,
        action_type=action_type,
        action_normalize=action_normalize,
        reset_joint_pos=reset_joint_pos,
        **kwargs,
    )

    assert not isinstance(self._load_config["scale"], th.Tensor) or th.all(
        self._load_config["scale"] == self._load_config["scale"][0]
    ), f"Robot scale must be uniform! Got: {self._load_config['scale']}"

add_obs_modality(modality)

Adds observation modality @modality to this robot. Note: Should be one of omnigibson.sensors.ALL_SENSOR_MODALITIES

Parameters:

Name Type Description Default
modality str

Observation modality to add to this robot

required
Source code in omnigibson/robots/robot_base.py
def add_obs_modality(self, modality):
    """
    Adds observation modality @modality to this robot. Note: Should be one of omnigibson.sensors.ALL_SENSOR_MODALITIES

    Args:
        modality (str): Observation modality to add to this robot
    """
    # Iterate over all sensors we own, and if the requested modality is a part of its possible valid modalities,
    # then we add it
    for sensor in self._sensors.values():
        if modality in sensor.all_modalities:
            sensor.add_modality(modality=modality)

get_obs()

Grabs all observations from the robot. This is keyword-mapped based on each observation modality (e.g.: proprio, rgb, etc.)

Returns:

Type Description
2 - tuple

dict: Keyword-mapped dictionary mapping observation modality names to observations (usually np arrays) dict: Keyword-mapped dictionary mapping observation modality names to additional info

Source code in omnigibson/robots/robot_base.py
def get_obs(self):
    """
    Grabs all observations from the robot. This is keyword-mapped based on each observation modality
        (e.g.: proprio, rgb, etc.)

    Returns:
        2-tuple:
            dict: Keyword-mapped dictionary mapping observation modality names to
                observations (usually np arrays)
            dict: Keyword-mapped dictionary mapping observation modality names to
                additional info
    """
    # Our sensors already know what observation modalities it has, so we simply iterate over all of them
    # and grab their observations, processing them into a flat dict
    obs_dict = dict()
    info_dict = dict()
    for sensor_name, sensor in self._sensors.items():
        obs_dict[sensor_name], info_dict[sensor_name] = sensor.get_obs()

    # Have to handle proprio separately since it's not an actual sensor
    if "proprio" in self._obs_modalities:
        obs_dict["proprio"], info_dict["proprio"] = self.get_proprioception()

    return obs_dict, info_dict

get_proprioception()

Returns:

Type Description
n - array

numpy array of all robot-specific proprioceptive observations.

dict

empty dictionary, a placeholder for additional info

Source code in omnigibson/robots/robot_base.py
def get_proprioception(self):
    """
    Returns:
        n-array: numpy array of all robot-specific proprioceptive observations.
        dict: empty dictionary, a placeholder for additional info
    """
    proprio_dict = self._get_proprioception_dict()
    return th.cat([proprio_dict[obs] for obs in self._proprio_obs]), {}

remove()

Do NOT call this function directly to remove a prim - call og.sim.remove_prim(prim) for proper cleanup

Source code in omnigibson/robots/robot_base.py
def remove(self):
    """
    Do NOT call this function directly to remove a prim - call og.sim.remove_prim(prim) for proper cleanup
    """
    # Remove all sensors
    for sensor in self._sensors.values():
        sensor.remove()

    # Run super
    super().remove()

remove_obs_modality(modality)

Remove observation modality @modality from this robot. Note: Should be one of omnigibson.sensors.ALL_SENSOR_MODALITIES

Parameters:

Name Type Description Default
modality str

Observation modality to remove from this robot

required
Source code in omnigibson/robots/robot_base.py
def remove_obs_modality(self, modality):
    """
    Remove observation modality @modality from this robot. Note: Should be one of
    omnigibson.sensors.ALL_SENSOR_MODALITIES

    Args:
        modality (str): Observation modality to remove from this robot
    """
    # Iterate over all sensors we own, and if the requested modality is a part of its possible valid modalities,
    # then we remove it
    for sensor in self._sensors.values():
        if modality in sensor.all_modalities:
            sensor.remove_modality(modality=modality)

teleop_data_to_action(teleop_action)

Generate action data from teleoperation action data Args: teleop_action (TeleopAction): teleoperation action data Returns: th.tensor: array of action data filled with update value

Source code in omnigibson/robots/robot_base.py
def teleop_data_to_action(self, teleop_action) -> th.Tensor:
    """
    Generate action data from teleoperation action data
    Args:
        teleop_action (TeleopAction): teleoperation action data
    Returns:
        th.tensor: array of action data filled with update value
    """
    return th.zeros(self.action_dim)

visualize_sensors()

Renders this robot's key sensors, visualizing them via matplotlib plots

Source code in omnigibson/robots/robot_base.py
def visualize_sensors(self):
    """
    Renders this robot's key sensors, visualizing them via matplotlib plots
    """
    frames = dict()
    remaining_obs_modalities = deepcopy(self.obs_modalities)
    for sensor in self.sensors.values():
        obs, _ = sensor.get_obs()
        sensor_frames = []
        if isinstance(sensor, VisionSensor):
            # We check for rgb, depth, normal, seg_instance
            for modality in ["rgb", "depth", "normal", "seg_instance"]:
                if modality in sensor.modalities:
                    ob = obs[modality]
                    if modality == "rgb":
                        # Ignore alpha channel, map to floats
                        ob = ob[:, :, :3] / 255.0
                    elif modality == "seg_instance":
                        # Map IDs to rgb
                        ob = segmentation_to_rgb(ob, N=256) / 255.0
                    elif modality == "normal":
                        # Re-map to 0 - 1 range
                        ob = (ob + 1.0) / 2.0
                    else:
                        # Depth, nothing to do here
                        pass
                    # Add this observation to our frames and remove the modality
                    sensor_frames.append((modality, ob))
                    remaining_obs_modalities -= {modality}
                else:
                    # Warn user that we didn't find this modality
                    print(f"Modality {modality} is not active in sensor {sensor.name}, skipping...")
        elif isinstance(sensor, ScanSensor):
            # We check for occupancy_grid
            occupancy_grid = obs.get("occupancy_grid", None)
            if occupancy_grid is not None:
                sensor_frames.append(("occupancy_grid", occupancy_grid))
                remaining_obs_modalities -= {"occupancy_grid"}

        # Map the sensor name to the frames for that sensor
        frames[sensor.name] = sensor_frames

    # Warn user that any remaining modalities are not able to be visualized
    if len(remaining_obs_modalities) > 0:
        print(f"Modalities: {remaining_obs_modalities} cannot be visualized, skipping...")

    # Write all the frames to a plot
    import matplotlib.pyplot as plt

    for sensor_name, sensor_frames in frames.items():
        n_sensor_frames = len(sensor_frames)
        if n_sensor_frames > 0:
            fig, axes = plt.subplots(nrows=1, ncols=n_sensor_frames)
            if n_sensor_frames == 1:
                axes = [axes]
            # Dump frames and set each subtitle
            for i, (modality, frame) in enumerate(sensor_frames):
                axes[i].imshow(frame)
                axes[i].set_title(modality)
                axes[i].set_axis_off()
            # Set title
            fig.suptitle(sensor_name)
            plt.show(block=False)

    # One final plot show so all the figures get rendered
    plt.show()