Skip to content

cloth_prim

ClothPrim

Bases: GeomPrim

Provides high level functions to deal with a cloth prim and its attributes/ properties. If there is an prim present at the path, it will use it. Otherwise, a new XForm prim at the specified prim path will be created.

if the prim does not already have a cloth api applied to it before it is loaded,

it will apply it.

Parameters:

Name Type Description Default
relative_prim_path str

Scene-local prim path of the Prim to encapsulate or create.

required
name str

Name for the object. Names need to be unique per scene.

required
load_config None or dict

If specified, should contain keyword-mapped values that are relevant for loading this prim at runtime. Note that this is only needed if the prim does not already exist at @relative_prim_path -- it will be ignored if it already exists. For this joint prim, the below values can be specified:

scale (None or float or 3-array): If specified, sets the scale for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a 3-array specifies per-axis scaling. mass (None or float): If specified, mass of this body in kg

None
Source code in omnigibson/prims/cloth_prim.py
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
class ClothPrim(GeomPrim):
    """
    Provides high level functions to deal with a cloth prim and its attributes/ properties.
    If there is an prim present at the path, it will use it. Otherwise, a new XForm prim at
    the specified prim path will be created.

    Notes: if the prim does not already have a cloth api applied to it before it is loaded,
        it will apply it.

    Args:
        relative_prim_path (str): Scene-local prim path of the Prim to encapsulate or create.
        name (str): Name for the object. Names need to be unique per scene.
        load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for
            loading this prim at runtime. Note that this is only needed if the prim does not already exist at
            @relative_prim_path -- it will be ignored if it already exists. For this joint prim, the below values can be
            specified:

            scale (None or float or 3-array): If specified, sets the scale for this object. A single number corresponds
                to uniform scaling along the x,y,z axes, whereas a 3-array specifies per-axis scaling.
            mass (None or float): If specified, mass of this body in kg
    """

    def __init__(
        self,
        relative_prim_path,
        name,
        load_config=None,
    ):
        # Internal vars stored
        self._centroid_idx = None
        self._keypoint_idx = None
        self._keyface_idx = None

        # Run super init
        super().__init__(
            relative_prim_path=relative_prim_path,
            name=name,
            load_config=load_config,
        )

    def _post_load(self):
        # run super first
        super()._post_load()

        # Make sure flatcache is not being used -- if so, raise an error, since we lose most of our needed functionality
        # (such as R/W to specific particle states) when flatcache is enabled
        assert not gm.ENABLE_FLATCACHE, "Cannot use flatcache with ClothPrim!"

        self._mass_api = (
            lazy.pxr.UsdPhysics.MassAPI(self._prim)
            if self._prim.HasAPI(lazy.pxr.UsdPhysics.MassAPI)
            else lazy.pxr.UsdPhysics.MassAPI.Apply(self._prim)
        )

        # Possibly set the mass / density
        if "mass" in self._load_config and self._load_config["mass"] is not None:
            self.mass = self._load_config["mass"]

        # Clothify this prim, which is assumed to be a mesh
        self.cloth_system.clothify_mesh_prim(mesh_prim=self._prim, remesh=self._load_config.get("remesh", True))

        # Track generated particle count
        positions = self.compute_particle_positions()
        self._n_particles = len(positions)

        # Sample mesh keypoints / keyvalues and sanity check the AABB of these subsampled points vs. the actual points
        success = False
        for i in range(10):
            self._keypoint_idx, self._keyface_idx = sample_mesh_keypoints(
                mesh_prim=self._prim,
                n_keypoints=m.N_CLOTH_KEYPOINTS,
                n_keyfaces=m.N_CLOTH_KEYFACES,
                seed=i,
            )

            keypoint_positions = positions[self._keypoint_idx]
            keypoint_aabb = keypoint_positions.min(dim=0).values, keypoint_positions.max(dim=0).values
            true_aabb = positions.min(dim=0).values, positions.max(dim=0).values
            overlap_x = th.max(
                th.min(true_aabb[1][0], keypoint_aabb[1][0]) - th.max(true_aabb[0][0], keypoint_aabb[0][0]),
                th.tensor(0),
            )
            overlap_y = th.max(
                th.min(true_aabb[1][1], keypoint_aabb[1][1]) - th.max(true_aabb[0][1], keypoint_aabb[0][1]),
                th.tensor(0),
            )
            overlap_z = th.max(
                th.min(true_aabb[1][2], keypoint_aabb[1][2]) - th.max(true_aabb[0][2], keypoint_aabb[0][2]),
                th.tensor(0),
            )
            overlap_vol = overlap_x * overlap_y * overlap_z
            true_vol = th.prod(true_aabb[1] - true_aabb[0])
            if true_vol == 0.0 or (overlap_vol / true_vol > m.KEYPOINT_COVERAGE_THRESHOLD).item():
                success = True
                break
        assert success, f"Did not adequately subsample keypoints for cloth {self.name}!"

        # Compute centroid particle idx based on AABB
        aabb_min, aabb_max = th.min(positions, dim=0).values, th.max(positions, dim=0).values
        aabb_center = (aabb_min + aabb_max) / 2.0
        dists = th.norm(positions - aabb_center.reshape(1, 3), dim=-1)
        self._centroid_idx = th.argmin(dists)

        # Store the default position of the points in the local frame
        self._default_positions = vtarray_to_torch(self.get_attribute(attr="points"))

    @property
    def visual_aabb(self):
        return self.aabb

    @property
    def visual_aabb_extent(self):
        return self.aabb_extent

    @property
    def visual_aabb_center(self):
        return self.aabb_center

    @property
    def cloth_system(self):
        return self.scene.get_system("cloth")

    @property
    def n_particles(self):
        """
        Returns:
            int: Number of particles owned by this cloth prim
        """
        return self._n_particles

    @property
    def kinematic_only(self):
        """
        Returns:
            bool: Whether this object is a kinematic-only object. For ClothPrim, always return False.
        """
        return False

    def compute_particle_positions(self, idxs=None):
        """
        Compute individual particle positions for this cloth prim

        Args:
            idxs (n-array or None): If set, will only calculate the requested indexed particle state

        Returns:
            th.tensor: (N, 3) numpy array, where each of the N particles' positions are expressed in (x,y,z)
                cartesian coordinates relative to the world frame
        """
        pos, ori = self.get_position_orientation()
        ori = T.quat2mat(ori)
        scale = self.scale

        # Don't copy to save compute, since we won't be returning a reference to the underlying object anyways
        p_local = vtarray_to_torch(self.get_attribute(attr="points"))
        p_local = p_local[idxs] if idxs is not None else p_local
        p_world = (ori @ (p_local * scale).T).T + pos

        return p_world

    def set_particle_positions(self, positions, idxs=None):
        """
        Sets individual particle positions for this cloth prim

        Args:
            positions (n-array): (N, 3) numpy array, where each of the N particles' positions are expressed in (x,y,z)
                cartesian coordinates relative to the world frame
            idxs (n-array or None): If set, will only set the requested indexed particle state
        """
        n_expected = self._n_particles if idxs is None else len(idxs)
        assert (
            len(positions) == n_expected
        ), f"Got mismatch in particle setting size: {len(positions)}, vs. number of expected particles {n_expected}!"

        translation, rotation = self.get_position_orientation()
        rotation = T.quat2mat(rotation)
        scale = self.scale
        p_local = (rotation.T @ (positions - translation).T).T / scale

        # Fill the idxs if requested
        if idxs is not None:
            p_local_old = vtarray_to_torch(self.get_attribute(attr="points"))
            p_local_old[idxs] = p_local
            p_local = p_local_old

        self.set_attribute(attr="points", val=lazy.pxr.Vt.Vec3fArray(p_local.tolist()))

    @property
    def keypoint_idx(self):
        """
        Returns:
            n-array: (N,) array specifying the keypoint particle IDs
        """
        return self._keypoint_idx

    @property
    def keyface_idx(self):
        """
        Returns:
            n-array: (N,) array specifying the keyface IDs
        """
        return self._keyface_idx

    @property
    def faces(self):
        """
        Grabs particle indexes defining each of the faces for this cloth prim

        Returns:
             th.tensor: (N, 3) numpy array, where each of the N faces are defined by the 3 particle indices
                corresponding to that face's vertices
        """
        return th.tensor(self.get_attribute("faceVertexIndices")).reshape(-1, 3)

    @property
    def keyfaces(self):
        """
        Grabs particle indexes defining each of the keyfaces for this cloth prim.
        Total number of keyfaces is m.N_CLOTH_KEYFACES

        Returns:
             th.tensor: (N, 3) numpy array, where each of the N keyfaces are defined by the 3 particle indices
                corresponding to that face's vertices
        """
        return self.faces[self._keyface_idx]

    @property
    def keypoint_particle_positions(self):
        """
        Grabs individual keypoint particle positions for this cloth prim.
        Total number of keypoints is m.N_CLOTH_KEYPOINTS

        Returns:
            th.tensor: (N, 3) numpy array, where each of the N keypoint particles' positions are expressed in (x,y,z)
                cartesian coordinates relative to the world frame
        """
        return self.compute_particle_positions(idxs=self._keypoint_idx)

    @property
    def centroid_particle_position(self):
        """
        Grabs the individual particle that was pre-computed to be the closest to the centroid of this cloth prim.

        Returns:
            th.tensor: centroid particle's (x,y,z) cartesian coordinates relative to the world frame
        """
        return self.compute_particle_positions(idxs=[self._centroid_idx])

    @property
    def particle_velocities(self):
        """
        Grabs individual particle velocities for this cloth prim

        Returns:
            th.tensor: (N, 3) numpy array, where each of the N particles' velocities are expressed in (x,y,z)
                cartesian coordinates with respect to the world frame.
        """
        # the velocities attribute is w.r.t the world frame already
        return vtarray_to_torch(self.get_attribute(attr="velocities"))

    @particle_velocities.setter
    def particle_velocities(self, vel):
        """
        Set the particle velocities of this cloth

        Args:
            th.tensor: (N, 3) numpy array, where each of the N particles' velocities are expressed in (x,y,z)
                cartesian coordinates with respect to the world frame
        """
        assert (
            vel.shape[0] == self._n_particles
        ), f"Got mismatch in particle setting size: {vel.shape[0]}, vs. number of particles {self._n_particles}!"

        # the velocities attribute is w.r.t the world frame already
        self.set_attribute(attr="velocities", val=lazy.pxr.Vt.Vec3fArray(vel.tolist()))

    def compute_face_normals(self, face_ids=None):
        """
        Grabs individual face normals for this cloth prim

        Args:
            face_ids (None or n-array): If specified, list of face IDs whose corresponding normals should be computed
                If None, all faces will be used

        Returns:
            th.tensor: (N, 3) numpy array, where each of the N faces' normals are expressed in (x,y,z)
                cartesian coordinates with respect to the world frame.
        """
        faces = self.faces if face_ids is None else self.faces[face_ids]
        points = self.compute_particle_positions(idxs=faces.flatten()).reshape(-1, 3, 3)
        return self.compute_face_normals_from_particle_positions(positions=points)

    def compute_face_normals_from_particle_positions(self, positions):
        """
        Grabs individual face normals for this cloth prim

        Args:
            positions (n-array): (N, 3, 3) array specifying the per-face particle positions

        Returns:
            th.tensor: (N, 3) numpy array, where each of the N faces' normals are expressed in (x,y,z)
                cartesian coordinates with respect to the world frame.
        """
        # Shape [F, 3]
        v1 = positions[:, 2, :] - positions[:, 0, :]
        v2 = positions[:, 1, :] - positions[:, 0, :]
        normals = th.linalg.cross(v1, v2)
        return normals / th.norm(normals, dim=1).reshape(-1, 1)

    def contact_list(self, keypoints_only=True):
        """
        Get list of all current contacts with this cloth body

        Args:
            keypoints_only (bool): If True, will only check contact with this cloth's keypoints

        Returns:
            list of CsRawData: raw contact info for this cloth body
        """
        contacts = []

        def report_hit(hit):
            contacts.append(
                CsRawData(
                    time=0.0,  # dummy value
                    dt=0.0,  # dummy value
                    body0=self.prim_path,
                    body1=hit.rigid_body,
                    position=pos,
                    normal=th.zeros(3),  # dummy value
                    impulse=th.zeros(3),  # dummy value
                )
            )
            return True

        positions = self.keypoint_particle_positions if keypoints_only else self.compute_particle_positions()
        for pos in positions:
            og.sim.psqi.overlap_sphere(self.cloth_system.particle_contact_offset, pos.tolist(), report_hit, False)

        return contacts

    def update_handles(self):
        # no handles to update
        pass

    @property
    def volume(self):
        mesh = mesh_prim_to_trimesh_mesh(self.prim, include_normals=False, include_texcoord=False, world_frame=True)
        return mesh.volume if mesh.is_volume else mesh.convex_hull.volume

    @volume.setter
    def volume(self, volume):
        raise NotImplementedError("Cannot set volume directly for a link!")

    @property
    def mass(self):
        """
        Returns:
            float: mass of the rigid body in kg.
        """
        # We have to read the mass directly in the cloth prim
        return self._mass_api.GetMassAttr().Get()

    @mass.setter
    def mass(self, mass):
        """
        Args:
            mass (float): mass of the rigid body in kg.
        """
        # We have to set the mass directly in the cloth prim
        self._mass_api.GetMassAttr().Set(mass)

    @property
    def density(self):
        raise NotImplementedError("Cannot get density for ClothPrim")

    @density.setter
    def density(self, density):
        raise NotImplementedError("Cannot set density for ClothPrim")

    @property
    def body_name(self):
        """
        Returns:
            str: Name of this body
        """
        return self.prim_path.split("/")[-1]

    def get_linear_velocity(self):
        """
        Returns:
            th.tensor: current average linear velocity of the particles of the cloth prim. Shape (3,).
        """
        return vtarray_to_torch(self._prim.GetAttribute("velocities").Get()).mean(dim=0)

    def get_angular_velocity(self):
        """
        Returns:
            th.tensor: zero vector as a placeholder because a cloth prim doesn't have an angular velocity. Shape (3,).
        """
        return th.zeros(3)

    def set_linear_velocity(self, velocity):
        """
        Sets the linear velocity of all the particles of the cloth prim.

        Args:
            velocity (th.tensor): linear velocity to set all the particles of the cloth prim to. Shape (3,).
        """
        vel = self.particle_velocities
        vel[:] = velocity
        self.particle_velocities = vel

    def set_angular_velocity(self, velocity):
        """
        Simply returns because a cloth prim doesn't have an angular velocity

        Args:
            velocity (th.tensor): linear velocity to set all the particles of the cloth prim to. Shape (3,).
        """
        return

    def wake(self):
        # TODO (eric): Just a pass through for now.
        return

    @property
    def bend_stiffness(self):
        """
        Returns:
            float: spring bend stiffness of the particle system
        """
        return self.get_attribute("physxAutoParticleCloth:springBendStiffness")

    @bend_stiffness.setter
    def bend_stiffness(self, bend_stiffness):
        """
        Args:
            bend_stiffness (float): spring bend stiffness of the particle system
        """
        self.set_attribute("physxAutoParticleCloth:springBendStiffness", bend_stiffness)

    @property
    def damping(self):
        """
        Returns:
            float: spring damping of the particle system
        """
        return self.get_attribute("physxAutoParticleCloth:springDamping")

    @damping.setter
    def damping(self, damping):
        """
        Args:
            damping (float): spring damping of the particle system
        """
        self.set_attribute("physxAutoParticleCloth:springDamping", damping)

    @property
    def shear_stiffness(self):
        """
        Returns:
            float: spring shear_stiffness of the particle system
        """
        return self.get_attribute("physxAutoParticleCloth:springShearStiffness")

    @shear_stiffness.setter
    def shear_stiffness(self, shear_stiffness):
        """
        Args:
            shear_stiffness (float): spring shear_stiffness of the particle system
        """
        self.set_attribute("physxAutoParticleCloth:springShearStiffness", shear_stiffness)

    @property
    def stretch_stiffness(self):
        """
        Returns:
            float: spring stretch_stiffness of the particle system
        """
        return self.get_attribute("physxAutoParticleCloth:springStretchStiffness")

    @stretch_stiffness.setter
    def stretch_stiffness(self, stretch_stiffness):
        """
        Args:
            stretch_stiffness (float): spring stretch_stiffness of the particle system
        """
        self.set_attribute("physxAutoParticleCloth:springStretchStiffness", stretch_stiffness)

    @property
    def particle_group(self):
        """
        Returns:
            int: Particle group this instancer belongs to
        """
        return self.get_attribute(attr="physxParticle:particleGroup")

    @particle_group.setter
    def particle_group(self, group):
        """
        Args:
            group (int): Particle group this instancer belongs to
        """
        self.set_attribute(attr="physxParticle:particleGroup", val=group)

    def _dump_state(self):
        # Run super first
        state = super()._dump_state()
        state["particle_group"] = self.particle_group
        state["n_particles"] = self.n_particles
        state["particle_positions"] = self.compute_particle_positions()
        state["particle_velocities"] = self.particle_velocities
        return state

    def _load_state(self, state):
        # Run super first
        super()._load_state(state=state)
        # Sanity check the identification number and particle group
        assert self.particle_group == state["particle_group"], (
            f"Got mismatch in particle group for this cloth "
            f"when loading state! Should be: {self.particle_group}, got: {state['particle_group']}."
        )

        # Set values appropriately
        self._n_particles = state["n_particles"]
        # Make sure the loaded state is a numpy array, it could have been accidentally casted into a list during
        # JSON-serialization
        self.particle_velocities = (
            th.tensor(state["particle_velocities"])
            if not isinstance(state["particle_velocities"], th.Tensor)
            else state["particle_velocities"]
        )
        self.set_particle_positions(positions=state["particle_positions"])

    def serialize(self, state):
        # Run super first
        state_flat = super().serialize(state=state)

        return th.cat(
            [
                state_flat,
                th.tensor([state["particle_group"], state["n_particles"]], dtype=th.float32),
                state["particle_positions"].reshape(-1),
                state["particle_velocities"].reshape(-1),
            ]
        )

    def deserialize(self, state):
        # Run super first
        state_dict, idx = super().deserialize(state=state)

        particle_group = int(state[idx])
        n_particles = int(state[idx + 1])

        # Sanity check the identification number
        assert self.particle_group == particle_group, (
            f"Got mismatch in particle group for this particle "
            f"instancer when deserializing state! Should be: {self.particle_group}, got: {particle_group}."
        )

        # De-compress from 1D array
        state_dict["particle_group"] = particle_group
        state_dict["n_particles"] = n_particles

        # Process remaining keys and reshape automatically
        keys = ("particle_positions", "particle_velocities")
        sizes = ((n_particles, 3), (n_particles, 3))

        idx += 2
        for key, size in zip(keys, sizes):
            length = math.prod(size)
            state_dict[key] = state[idx : idx + length].reshape(size)
            idx += length

        return state_dict, idx

    def reset(self):
        """
        Reset the points to their default positions in the local frame, and also zeroes out velocities
        """
        if self.initialized:
            self.set_attribute(attr="points", val=lazy.pxr.Vt.Vec3fArray(self._default_positions.tolist()))
            self.particle_velocities = th.zeros((self._n_particles, 3))

bend_stiffness property writable

Returns:

Type Description
float

spring bend stiffness of the particle system

body_name property

Returns:

Type Description
str

Name of this body

centroid_particle_position property

Grabs the individual particle that was pre-computed to be the closest to the centroid of this cloth prim.

Returns:

Type Description
tensor

centroid particle's (x,y,z) cartesian coordinates relative to the world frame

damping property writable

Returns:

Type Description
float

spring damping of the particle system

faces property

Grabs particle indexes defining each of the faces for this cloth prim

Returns:

Type Description
tensor

(N, 3) numpy array, where each of the N faces are defined by the 3 particle indices corresponding to that face's vertices

keyface_idx property

Returns:

Type Description
n - array

(N,) array specifying the keyface IDs

keyfaces property

Grabs particle indexes defining each of the keyfaces for this cloth prim. Total number of keyfaces is m.N_CLOTH_KEYFACES

Returns:

Type Description
tensor

(N, 3) numpy array, where each of the N keyfaces are defined by the 3 particle indices corresponding to that face's vertices

keypoint_idx property

Returns:

Type Description
n - array

(N,) array specifying the keypoint particle IDs

keypoint_particle_positions property

Grabs individual keypoint particle positions for this cloth prim. Total number of keypoints is m.N_CLOTH_KEYPOINTS

Returns:

Type Description
tensor

(N, 3) numpy array, where each of the N keypoint particles' positions are expressed in (x,y,z) cartesian coordinates relative to the world frame

kinematic_only property

Returns:

Type Description
bool

Whether this object is a kinematic-only object. For ClothPrim, always return False.

mass property writable

Returns:

Type Description
float

mass of the rigid body in kg.

n_particles property

Returns:

Type Description
int

Number of particles owned by this cloth prim

particle_group property writable

Returns:

Type Description
int

Particle group this instancer belongs to

particle_velocities property writable

Grabs individual particle velocities for this cloth prim

Returns:

Type Description
tensor

(N, 3) numpy array, where each of the N particles' velocities are expressed in (x,y,z) cartesian coordinates with respect to the world frame.

shear_stiffness property writable

Returns:

Type Description
float

spring shear_stiffness of the particle system

stretch_stiffness property writable

Returns:

Type Description
float

spring stretch_stiffness of the particle system

compute_face_normals(face_ids=None)

Grabs individual face normals for this cloth prim

Parameters:

Name Type Description Default
face_ids None or n - array

If specified, list of face IDs whose corresponding normals should be computed If None, all faces will be used

None

Returns:

Type Description
tensor

(N, 3) numpy array, where each of the N faces' normals are expressed in (x,y,z) cartesian coordinates with respect to the world frame.

Source code in omnigibson/prims/cloth_prim.py
def compute_face_normals(self, face_ids=None):
    """
    Grabs individual face normals for this cloth prim

    Args:
        face_ids (None or n-array): If specified, list of face IDs whose corresponding normals should be computed
            If None, all faces will be used

    Returns:
        th.tensor: (N, 3) numpy array, where each of the N faces' normals are expressed in (x,y,z)
            cartesian coordinates with respect to the world frame.
    """
    faces = self.faces if face_ids is None else self.faces[face_ids]
    points = self.compute_particle_positions(idxs=faces.flatten()).reshape(-1, 3, 3)
    return self.compute_face_normals_from_particle_positions(positions=points)

compute_face_normals_from_particle_positions(positions)

Grabs individual face normals for this cloth prim

Parameters:

Name Type Description Default
positions n - array

(N, 3, 3) array specifying the per-face particle positions

required

Returns:

Type Description
tensor

(N, 3) numpy array, where each of the N faces' normals are expressed in (x,y,z) cartesian coordinates with respect to the world frame.

Source code in omnigibson/prims/cloth_prim.py
def compute_face_normals_from_particle_positions(self, positions):
    """
    Grabs individual face normals for this cloth prim

    Args:
        positions (n-array): (N, 3, 3) array specifying the per-face particle positions

    Returns:
        th.tensor: (N, 3) numpy array, where each of the N faces' normals are expressed in (x,y,z)
            cartesian coordinates with respect to the world frame.
    """
    # Shape [F, 3]
    v1 = positions[:, 2, :] - positions[:, 0, :]
    v2 = positions[:, 1, :] - positions[:, 0, :]
    normals = th.linalg.cross(v1, v2)
    return normals / th.norm(normals, dim=1).reshape(-1, 1)

compute_particle_positions(idxs=None)

Compute individual particle positions for this cloth prim

Parameters:

Name Type Description Default
idxs n - array or None

If set, will only calculate the requested indexed particle state

None

Returns:

Type Description
tensor

(N, 3) numpy array, where each of the N particles' positions are expressed in (x,y,z) cartesian coordinates relative to the world frame

Source code in omnigibson/prims/cloth_prim.py
def compute_particle_positions(self, idxs=None):
    """
    Compute individual particle positions for this cloth prim

    Args:
        idxs (n-array or None): If set, will only calculate the requested indexed particle state

    Returns:
        th.tensor: (N, 3) numpy array, where each of the N particles' positions are expressed in (x,y,z)
            cartesian coordinates relative to the world frame
    """
    pos, ori = self.get_position_orientation()
    ori = T.quat2mat(ori)
    scale = self.scale

    # Don't copy to save compute, since we won't be returning a reference to the underlying object anyways
    p_local = vtarray_to_torch(self.get_attribute(attr="points"))
    p_local = p_local[idxs] if idxs is not None else p_local
    p_world = (ori @ (p_local * scale).T).T + pos

    return p_world

contact_list(keypoints_only=True)

Get list of all current contacts with this cloth body

Parameters:

Name Type Description Default
keypoints_only bool

If True, will only check contact with this cloth's keypoints

True

Returns:

Type Description
list of CsRawData

raw contact info for this cloth body

Source code in omnigibson/prims/cloth_prim.py
def contact_list(self, keypoints_only=True):
    """
    Get list of all current contacts with this cloth body

    Args:
        keypoints_only (bool): If True, will only check contact with this cloth's keypoints

    Returns:
        list of CsRawData: raw contact info for this cloth body
    """
    contacts = []

    def report_hit(hit):
        contacts.append(
            CsRawData(
                time=0.0,  # dummy value
                dt=0.0,  # dummy value
                body0=self.prim_path,
                body1=hit.rigid_body,
                position=pos,
                normal=th.zeros(3),  # dummy value
                impulse=th.zeros(3),  # dummy value
            )
        )
        return True

    positions = self.keypoint_particle_positions if keypoints_only else self.compute_particle_positions()
    for pos in positions:
        og.sim.psqi.overlap_sphere(self.cloth_system.particle_contact_offset, pos.tolist(), report_hit, False)

    return contacts

get_angular_velocity()

Returns:

Type Description
tensor

zero vector as a placeholder because a cloth prim doesn't have an angular velocity. Shape (3,).

Source code in omnigibson/prims/cloth_prim.py
def get_angular_velocity(self):
    """
    Returns:
        th.tensor: zero vector as a placeholder because a cloth prim doesn't have an angular velocity. Shape (3,).
    """
    return th.zeros(3)

get_linear_velocity()

Returns:

Type Description
tensor

current average linear velocity of the particles of the cloth prim. Shape (3,).

Source code in omnigibson/prims/cloth_prim.py
def get_linear_velocity(self):
    """
    Returns:
        th.tensor: current average linear velocity of the particles of the cloth prim. Shape (3,).
    """
    return vtarray_to_torch(self._prim.GetAttribute("velocities").Get()).mean(dim=0)

reset()

Reset the points to their default positions in the local frame, and also zeroes out velocities

Source code in omnigibson/prims/cloth_prim.py
def reset(self):
    """
    Reset the points to their default positions in the local frame, and also zeroes out velocities
    """
    if self.initialized:
        self.set_attribute(attr="points", val=lazy.pxr.Vt.Vec3fArray(self._default_positions.tolist()))
        self.particle_velocities = th.zeros((self._n_particles, 3))

set_angular_velocity(velocity)

Simply returns because a cloth prim doesn't have an angular velocity

Parameters:

Name Type Description Default
velocity tensor

linear velocity to set all the particles of the cloth prim to. Shape (3,).

required
Source code in omnigibson/prims/cloth_prim.py
def set_angular_velocity(self, velocity):
    """
    Simply returns because a cloth prim doesn't have an angular velocity

    Args:
        velocity (th.tensor): linear velocity to set all the particles of the cloth prim to. Shape (3,).
    """
    return

set_linear_velocity(velocity)

Sets the linear velocity of all the particles of the cloth prim.

Parameters:

Name Type Description Default
velocity tensor

linear velocity to set all the particles of the cloth prim to. Shape (3,).

required
Source code in omnigibson/prims/cloth_prim.py
def set_linear_velocity(self, velocity):
    """
    Sets the linear velocity of all the particles of the cloth prim.

    Args:
        velocity (th.tensor): linear velocity to set all the particles of the cloth prim to. Shape (3,).
    """
    vel = self.particle_velocities
    vel[:] = velocity
    self.particle_velocities = vel

set_particle_positions(positions, idxs=None)

Sets individual particle positions for this cloth prim

Parameters:

Name Type Description Default
positions n - array

(N, 3) numpy array, where each of the N particles' positions are expressed in (x,y,z) cartesian coordinates relative to the world frame

required
idxs n - array or None

If set, will only set the requested indexed particle state

None
Source code in omnigibson/prims/cloth_prim.py
def set_particle_positions(self, positions, idxs=None):
    """
    Sets individual particle positions for this cloth prim

    Args:
        positions (n-array): (N, 3) numpy array, where each of the N particles' positions are expressed in (x,y,z)
            cartesian coordinates relative to the world frame
        idxs (n-array or None): If set, will only set the requested indexed particle state
    """
    n_expected = self._n_particles if idxs is None else len(idxs)
    assert (
        len(positions) == n_expected
    ), f"Got mismatch in particle setting size: {len(positions)}, vs. number of expected particles {n_expected}!"

    translation, rotation = self.get_position_orientation()
    rotation = T.quat2mat(rotation)
    scale = self.scale
    p_local = (rotation.T @ (positions - translation).T).T / scale

    # Fill the idxs if requested
    if idxs is not None:
        p_local_old = vtarray_to_torch(self.get_attribute(attr="points"))
        p_local_old[idxs] = p_local
        p_local = p_local_old

    self.set_attribute(attr="points", val=lazy.pxr.Vt.Vec3fArray(p_local.tolist()))