data_wrapper
DataCollectionWrapper
Bases: DataWrapper
An OmniGibson environment wrapper for collecting data in an optimized way.
NOTE: This does NOT aggregate observations. Please use DataPlaybackWrapper to aggregate an observation dataset!
Source code in omnigibson/envs/data_wrapper.py
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
|
__init__(env, output_path, viewport_camera_path='/World/viewer_camera', only_successes=True)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
env
|
Environment
|
The environment to wrap |
required |
output_path
|
str
|
path to store hdf5 data file |
required |
viewport_camera_path
|
str
|
prim path to the camera to use when rendering the main viewport during data collection |
'/World/viewer_camera'
|
only_successes
|
bool
|
Whether to only save successful episodes |
True
|
Source code in omnigibson/envs/data_wrapper.py
add_transition_info(obj, add=True)
Adds transition info to the current sim step for specific object @obj.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
obj
|
BaseObject or BaseSystem
|
Object / system whose information should be stored |
required |
add
|
bool
|
If True, assumes the object is being imported. Else, assumes the object is being removed |
True
|
Source code in omnigibson/envs/data_wrapper.py
DataPlaybackWrapper
Bases: DataWrapper
An OmniGibson environment wrapper for playing back data and collecting observations.
NOTE: This assumes a DataCollectionWrapper environment has been used to collect data!
Source code in omnigibson/envs/data_wrapper.py
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 |
|
__init__(env, input_path, output_path, n_render_iterations=5, only_successes=False)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
env
|
Environment
|
The environment to wrap |
required |
input_path
|
str
|
path to input hdf5 collected data file |
required |
output_path
|
str
|
path to store output hdf5 data file |
required |
n_render_iterations
|
int
|
Number of rendering iterations to use when loading each stored frame from the recorded data |
5
|
only_successes
|
bool
|
Whether to only save successful episodes |
False
|
Source code in omnigibson/envs/data_wrapper.py
create_from_hdf5(input_path, output_path, robot_obs_modalities, robot_sensor_config=None, external_sensors_config=None, n_render_iterations=5, only_successes=False)
classmethod
Create a DataPlaybackWrapper environment instance form the recorded demonstration info from @hdf5_path, and aggregate observation_modalities @obs during playback
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_path
|
str
|
Absolute path to the input hdf5 file containing the relevant collected data to playback |
required |
output_path
|
str
|
Absolute path to the output hdf5 file that will contain the recorded observations from the replayed data |
required |
robot_obs_modalities
|
list
|
Robot observation modalities to use. This list is directly passed into
the robot_cfg ( |
required |
robot_sensor_config
|
None or dict
|
If specified, the sensor configuration to use for the robot. See the example sensor_config in fetch_behavior.yaml env config. This can be used to specify relevant sensor params, such as image_height and image_width |
None
|
external_sensors_config
|
None or list
|
If specified, external sensor(s) to use. This will override the external_sensors kwarg in the env config when the environment is loaded. Each entry should be a dictionary specifying an individual external sensor's relevant parameters. See the example external_sensors key in fetch_behavior.yaml env config. This can be used to specify additional sensors to collect observations during playback. |
None
|
n_render_iterations
|
int
|
Number of rendering iterations to use when loading each stored frame from the recorded data. This is needed because the omniverse real-time raytracing always lags behind the underlying physical state by a few frames, and additionally produces transient visual artifacts when the physical state changes. Increasing this number will improve the rendered quality at the expense of speed. |
5
|
only_successes
|
bool
|
Whether to only save successful episodes |
False
|
Returns:
Type | Description |
---|---|
DataPlaybackWrapper
|
Generated playback environment |
Source code in omnigibson/envs/data_wrapper.py
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
|
playback_dataset(record=True)
Playback all episodes from the input HDF5 file, and optionally record observation data if @record is True
Parameters:
Name | Type | Description | Default |
---|---|---|---|
record
|
bool
|
Whether to record data during playback or not |
True
|
Source code in omnigibson/envs/data_wrapper.py
playback_episode(episode_id, record=True)
Playback episode @episode_id, and optionally record observation data if @record is True
Parameters:
Name | Type | Description | Default |
---|---|---|---|
episode_id
|
int
|
Episode to playback. This should be a valid demo ID number from the inputted collected data hdf5 file |
required |
record
|
bool
|
Whether to record data during playback or not |
True
|
Source code in omnigibson/envs/data_wrapper.py
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
|
DataWrapper
Bases: EnvironmentWrapper
An OmniGibson environment wrapper for writing data to an HDF5 file.
Source code in omnigibson/envs/data_wrapper.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
|
__init__(env, output_path, only_successes=True)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
env
|
Environment
|
The environment to wrap |
required |
output_path
|
str
|
path to store hdf5 data file |
required |
only_successes
|
bool
|
Whether to only save successful episodes |
True
|
Source code in omnigibson/envs/data_wrapper.py
add_metadata(group, name, data)
Adds metadata to the current HDF5 file under the "data" key
Parameters:
Name | Type | Description | Default |
---|---|---|---|
group
|
File or Group
|
HDF5 object to add an attribute to |
required |
name
|
str
|
Name to assign to the data |
required |
data
|
str or dict
|
Data to add. Note that this only supports relatively primitive data types -- if the data is a dictionary it will be converted into a string-json format using TorchEncoder |
required |
Source code in omnigibson/envs/data_wrapper.py
flush_current_traj()
Flush current trajectory data
Source code in omnigibson/envs/data_wrapper.py
observation_spec()
Grab the normal environment observation_spec
Returns:
Type | Description |
---|---|
dict
|
Observations from the environment |
process_traj_to_hdf5(traj_data, traj_grp_name, nested_keys=('obs',))
Processes trajectory data @traj_data and stores them as a new group under @traj_grp_name.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
traj_data
|
list of dict
|
Trajectory data, where each entry is a keyword-mapped set of data for a single sim step |
required |
traj_grp_name
|
str
|
Name of the trajectory group to store |
required |
nested_keys
|
list of str
|
Name of key(s) corresponding to nested data in @traj_data. This specific data is assumed to be its own keyword-mapped dictionary of numpy array values, and will be parsed differently from the rest of the data |
('obs',)
|
Returns:
Type | Description |
---|---|
Group
|
Generated hdf5 group storing the recorded trajectory data |
Source code in omnigibson/envs/data_wrapper.py
reset()
Run the environment reset() function and flush data
Returns:
Type | Description |
---|---|
2 - tuple
|
|
Source code in omnigibson/envs/data_wrapper.py
save_data()
Save collected trajectories as a hdf5 file in the robomimic format
Source code in omnigibson/envs/data_wrapper.py
step(action)
Run the environment step() function and collect data
Parameters:
Name | Type | Description | Default |
---|---|---|---|
action
|
Tensor
|
action to take in environment |
required |
Returns:
Type | Description |
---|---|
5 - tuple
|
|
5 - tuple
|
|