ik_controller
InverseKinematicsController
Bases: JointController
, ManipulationController
Controller class to convert (delta) EEF commands into joint velocities using Inverse Kinematics (IK).
Each controller step consists of the following
- Clip + Scale inputted command according to @command_input_limits and @command_output_limits
- Run Inverse Kinematics to back out joint velocities for a desired task frame command
- Clips the resulting command by the motor (velocity) limits
Source code in omnigibson/controllers/ik_controller.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
|
__init__(task_name, robot_description_path, robot_urdf_path, eef_name, control_freq, reset_joint_pos, control_limits, dof_idx, command_input_limits='default', command_output_limits=(th.tensor([-0.2, -0.2, -0.2, -0.5, -0.5, -0.5], dtype=th.float32), th.tensor([0.2, 0.2, 0.2, 0.5, 0.5, 0.5], dtype=th.float32)), kp=None, damping_ratio=None, use_impedances=True, mode='pose_delta_ori', smoothing_filter_size=None, workspace_pose_limiter=None, condition_on_current_position=True)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
task_name
|
str
|
name assigned to this task frame for computing IK control. During control calculations, the inputted control_dict should include entries named <@task_name>_pos_relative and <@task_name>_quat_relative. See self._command_to_control() for what these values should entail. |
required |
robot_description_path
|
str
|
path to robot descriptor yaml file |
required |
robot_urdf_path
|
str
|
path to robot urdf file |
required |
eef_name
|
str
|
end effector frame name |
required |
control_freq
|
int
|
controller loop frequency |
required |
reset_joint_pos
|
Array[float]
|
reset joint positions, used as part of nullspace controller in IK. Note that this should correspond to ALL the joints; the exact indices will be extracted via @dof_idx |
required |
control_limits
|
Dict[str, Tuple[Array[float], Array[float]]]
|
The min/max limits to the outputted control signal. Should specify per-dof type limits, i.e.:
Values outside of this range will be clipped, if the corresponding joint index in has_limit is True. |
required |
dof_idx
|
Array[int]
|
specific dof indices controlled by this robot. Used for inferring controller-relevant values during control computations |
required |
command_input_limits
|
None or default or Tuple[float, float] or Tuple[Array[float], Array[float]]
|
if set, is the min/max acceptable inputted command. Values outside this range will be clipped. If None, no clipping will be used. If "default", range will be set to (-1, 1) |
'default'
|
command_output_limits
|
None or default or Tuple[float, float] or Tuple[Array[float], Array[float]]
|
if set, is the min/max scaled command. If both this value and @command_input_limits is not None, then all inputted command values will be scaled from the input range to the output range. If either is None, no scaling will be used. If "default", then this range will automatically be set to the @control_limits entry corresponding to self.control_type |
(tensor([-0.2, -0.2, -0.2, -0.5, -0.5, -0.5], dtype=float32), tensor([0.2, 0.2, 0.2, 0.5, 0.5, 0.5], dtype=float32))
|
kp
|
None or float
|
The proportional gain applied to the joint controller. If None, a default value will be used. Only relevant if @use_impedances=True |
None
|
damping_ratio
|
None or float
|
The damping ratio applied to the joint controller. If None, a default value will be used. Only relevant if @use_impedances=True |
None
|
use_impedances
|
bool
|
If True, will use impedances via the mass matrix to modify the desired efforts applied |
True
|
mode
|
str
|
mode to use when computing IK. In all cases, position commands are 3DOF delta (dx,dy,dz) cartesian values, relative to the robot base frame. Valid options are: - "absolute_pose": 6DOF (dx,dy,dz,ax,ay,az) control over pose, where both the position and the orientation is given in absolute axis-angle coordinates - "pose_absolute_ori": 6DOF (dx,dy,dz,ax,ay,az) control over pose, where the orientation is given in absolute axis-angle coordinates - "pose_delta_ori": 6DOF (dx,dy,dz,dax,day,daz) control over pose - "position_fixed_ori": 3DOF (dx,dy,dz) control over position, with orientation commands being kept as fixed initial absolute orientation - "position_compliant_ori": 3DOF (dx,dy,dz) control over position, with orientation commands automatically being sent as 0s (so can drift over time) |
'pose_delta_ori'
|
smoothing_filter_size
|
None or int
|
if specified, sets the size of a moving average filter to apply on all outputted IK joint positions. |
None
|
workspace_pose_limiter
|
None or function
|
if specified, callback method that should clip absolute target (x,y,z) cartesian position and absolute quaternion orientation (x,y,z,w) to a specific workspace range (i.e.: this can be unique to each robot, and implemented by each embodiment). Function signature should be:
where target_pos is (x,y,z) cartesian position values, target_quat is (x,y,z,w) quarternion orientation values, and the returned tuple is the processed (pos, quat) command. |
None
|
condition_on_current_position
|
bool
|
if True, will use the current joint position as the initial guess for the IK algorithm. Otherwise, will use the reset_joint_pos as the initial guess. |
True
|
Source code in omnigibson/controllers/ik_controller.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
|
compute_control(goal_dict, control_dict)
Converts the (already preprocessed) inputted @command into deployable (non-clipped!) joint control signal. This processes the command based on self.mode, possibly clips the command based on self.workspace_pose_limiter,
Parameters:
Name | Type | Description | Default |
---|---|---|---|
goal_dict
|
Dict[str, Any]
|
dictionary that should include any relevant keyword-mapped goals necessary for controller computation. Must include the following keys: target_pos: robot-frame (x,y,z) desired end effector position target_quat: robot-frame (x,y,z,w) desired end effector quaternion orientation |
required |
control_dict
|
Dict[str, Any]
|
dictionary that should include any relevant keyword-mapped states necessary for controller computation. Must include the following keys: joint_position: Array of current joint positions base_pos: (x,y,z) cartesian position of the robot's base relative to the static global frame base_quat: (x,y,z,w) quaternion orientation of the robot's base relative to the static global frame <@self.task_name>_pos_relative: (x,y,z) relative cartesian position of the desired task frame to control, computed in its local frame (e.g.: robot base frame) <@self.task_name>_quat_relative: (x,y,z,w) relative quaternion orientation of the desired task frame to control, computed in its local frame (e.g.: robot base frame) |
required |
Returns:
Type | Description |
---|---|
Array[float]
|
outputted (non-clipped!) velocity control signal to deploy |